IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v134y2020icp1-24.html
   My bibliography  Save this article

Ridesharing user equilibrium problem under OD-based surge pricing strategy

Author

Listed:
  • Ma, Jie
  • Xu, Min
  • Meng, Qiang
  • Cheng, Lin

Abstract

Ridesharing is one of the effective urban traffic supply and demand management policies to reduce car ownership and mitigate traffic congestion. The origin-destination (OD) based surge pricing strategy is widely adopted by ridesharing service operators in practice due to its fairness and effectiveness. In this study, we aim to investigate the ridesharing user equilibrium (RUE) problem for an urban transportation network under the OD-based surge pricing strategy. We first build a variational inequality (VI) model for the proposed RUE problem. In particular, we explicitly formulate the necessary ride-matching constraints for the participants of multiple ridesharing services and rigorously demonstrate the existence and uniqueness of the RUE solution under some mild conditions. A parallel self-adaptive projection method (PSPM) incorporating column generation is developed to find an RUE solution for the large-scale problems. Finally, numerical experiments are conducted to provide valuable insights and examine the effectiveness of the proposed solution method. The results quantitatively show that the ridesharing under the OD-based surge pricing strategy reduces not only the travel cost for travelers but also the deliberate detours. Traffic congestion is significantly mitigated by ridesharing. Moreover, the proposed solution method has satisfactory computational efficiency for solving the large-scale problems.

Suggested Citation

  • Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
  • Handle: RePEc:eee:transb:v:134:y:2020:i:c:p:1-24
    DOI: 10.1016/j.trb.2020.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261519303832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2020. "Multiple equilibrium behaviors of auto travellers and a freight carrier under the cordon-based large-truck restriction regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    2. Xiaolei Wang & Hai Yang & Daoli Zhu, 2018. "Driver-Rider Cost-Sharing Strategies and Equilibria in a Ridesharing Program," Transportation Science, INFORMS, vol. 52(4), pages 868-881, August.
    3. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    4. Catherine Morency, 2007. "The ambivalence of ridesharing," Transportation, Springer, vol. 34(2), pages 239-253, March.
    5. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    6. T. Leventhal & G. Nemhauser & L. Trotter, 1973. "A Column Generation Algorithm for Optimal Traffic Assignment," Transportation Science, INFORMS, vol. 7(2), pages 168-176, May.
    7. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    8. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    9. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    10. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    11. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    12. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
    13. Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
    14. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    15. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.
    16. Di, Xuan & Ma, Rui & Liu, Henry X. & Ban, Xuegang (Jeff), 2018. "A link-node reformulation of ridesharing user equilibrium with network design," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 230-255.
    17. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Timmermans, Harry, 2019. "Tolerance-based strategies for extending the column generation algorithm to the bounded rational dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 102-121.
    18. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun, 2016. "On the morning commute problem with carpooling behavior under parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 383-407.
    19. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    20. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    21. Masoud, Neda & Lloret-Batlle, Roger & Jayakrishnan, R., 2017. "Using bilateral trading to increase ridership and user permanence in ridesharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 60-77.
    22. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    23. He, Bingsheng & He, Xiao-Zheng & Liu, Henry X. & Wu, Ting, 2009. "Self-adaptive projection method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 196(1), pages 43-48, July.
    24. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    25. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    26. Han, Deren & Lo, Hong K., 2004. "Solving non-additive traffic assignment problems: A descent method for co-coercive variational inequalities," European Journal of Operational Research, Elsevier, vol. 159(3), pages 529-544, December.
    27. Dial, Robert B., 1997. "Bicriterion traffic assignment: Efficient algorithms plus examples," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 357-379, October.
    28. Masoud, Neda & Jayakrishnan, R., 2017. "A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 218-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    3. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    4. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    6. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    7. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    8. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    9. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    10. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.
    11. Huang, Zhihui & Long, Jiancheng & Szeto, W.Y. & Liu, Haoxiang, 2021. "Modeling and managing the morning commute problem with park-and-ride-sharing," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 190-226.
    12. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    13. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    14. Li, Wei-Hong & Huang, Hai-Jun & Shang, Hua-Yan, 2020. "Dynamic equilibrium commuting in a multilane system with ridesharing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    15. Fu, Yulan & Wang, Chenlan & Liu, Tian-Liang & Huang, Hai-Jun, 2021. "Parking management in the morning commute problem with ridesharing," Research in Transportation Economics, Elsevier, vol. 90(C).
    16. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
    17. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    18. Zipeng Zhang & Ning Zhang, 2021. "The Morning Commute Problem with Ridesharing When Meet Stochastic Bottleneck," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    19. Yi Cao & Shan Wang & Jinyang Li, 2021. "The Optimization Model of Ride-Sharing Route for Ride Hailing Considering Both System Optimization and User Fairness," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    20. Wang, Dong & Liao, Feixiong, 2021. "Analysis of first-come-first-served mechanisms in one-way car-sharing services," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 22-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:134:y:2020:i:c:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.