IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v111y2018icp60-82.html
   My bibliography  Save this article

Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment

Author

Listed:
  • Xu, Min
  • Meng, Qiang
  • Liu, Zhiyuan

Abstract

This study proposes an interesting electric vehicle fleet size and trip pricing (EVFS&TP) problem for one-way carsharing services by taking into account the necessary practical requirements of vehicle relocation and personnel assignment. The EVFS&TP problem aims to maximize the profit of one-way carsharing operators by determining the electric vehicle fleet size, trip pricing, and strategies of vehicle relocation and personnel assignment subject to the elastic demand for the one-way carsharing services. A mixed-integer nonlinear and nonconvex programming model is first built for the EVFS&TP problem. By exploiting the unique structure of the original built model, a mixed-integer convex programming model is subsequently developed. An effective global optimization method with several outer-approximation schemes is put up to find the global optimal or ε-optimal solution to the EVFS&TP problem. A case study based on a one-way carsharing operator in Singapore is conducted to demonstrate the efficiency of the proposed model and solution method and further analyse the impact of demand, the degree of demand variation, the fixed operational cost of the vehicles as well as payment for personnel on the performance of the one-way carsharing services.

Suggested Citation

  • Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
  • Handle: RePEc:eee:transb:v:111:y:2018:i:c:p:60-82
    DOI: 10.1016/j.trb.2018.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517303946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    2. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    3. Wen Zhao & Yu-Sheng Zheng, 2000. "Optimal Dynamic Pricing for Perishable Assets with Nonhomogeneous Demand," Management Science, INFORMS, vol. 46(3), pages 375-388, March.
    4. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    5. Xu, Min & Meng, Qiang & Liu, Kai, 2017. "Network user equilibrium problems for the mixed battery electric vehicles and gasoline vehicles subject to battery swapping stations and road grade constraints," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 138-166.
    6. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    7. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    8. Jorge, Diana & Molnar, Goran & de Almeida Correia, Gonçalo Homem, 2015. "Trip pricing of one-way station-based carsharing networks with zone and time of day price variations," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 461-482.
    9. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    10. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    11. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    12. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    13. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    14. Hu, Lu & Liu, Yang, 2016. "Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 268-299.
    15. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    16. Abel P. Jeuland & Steven M. Shugan, 1988. "Note—Channel of Distribution Profits When Channel Members Form Conjectures," Marketing Science, INFORMS, vol. 7(2), pages 202-210.
    17. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    3. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    5. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    6. Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
    7. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    8. Zhao, Meng & Li, Xiaopeng & Yin, Jiateng & Cui, Jianxun & Yang, Lixing & An, Shi, 2018. "An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model formulation and Lagrangian relaxation-based solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 542-572.
    9. Zhang, Dong & Liu, Yang & He, Shuangchi, 2019. "Vehicle assignment and relays for one-way electric car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 125-146.
    10. Wei Zhou & Haixia Wang & Victor Shi & Xiding Chen, 2022. "A Decision Model for Free-Floating Car-Sharing Providers for Sustainable and Resilient Supply Chains," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    11. Nguyen, Tri K. & Hoang, Nam H. & Vu, Hai L., 2022. "A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Stokkink, Patrick & Geroliminis, Nikolas, 2021. "Predictive user-based relocation through incentives in one-way car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 230-249.
    13. Yang, Jie & Hu, Lu & Jiang, Yangsheng, 2022. "An overnight relocation problem for one-way carsharing systems considering employment planning, return restrictions, and ride sharing of temporary workers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    15. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    16. Hu, Lu & Liu, Yang, 2016. "Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 268-299.
    17. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    18. Hua, Yikang & Zhao, Dongfang & Wang, Xin & Li, Xiaopeng, 2019. "Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 185-206.
    19. Ren, Shuyun & Luo, Fengji & Lin, Lei & Hsu, Shu-Chien & LI, Xuran Ivan, 2019. "A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration," International Journal of Production Economics, Elsevier, vol. 218(C), pages 339-351.
    20. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:111:y:2018:i:c:p:60-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.