IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v102y2017icp60-77.html
   My bibliography  Save this article

Using bilateral trading to increase ridership and user permanence in ridesharing systems

Author

Listed:
  • Masoud, Neda
  • Lloret-Batlle, Roger
  • Jayakrishnan, R.

Abstract

One of the main obstacles that has challenged peer-to-peer (P2P) ridesharing systems in operating as stand-alone systems is reaching a critical mass of participants. Toward this goal, we propose what we call the P2P ride exchange mechanism to increase matching rate and customer retention in a ridesharing system. This mechanism gives riders the opportunity to purchase other riders’ itineraries while it provides suitable alternative rides to the sellers, thus increasing the service rate in a ridesharing system. The proposed mechanism aims to maximize expected user surplus, is robust towards selfish user manipulation, and has very low information requirements. Using numerical experiments, we demonstrate what type of ridesharing systems can benefit the most from P2P ride exchange. Furthermore, we study the impact of customer flexibility on the rate of exchange. If implemented properly, P2P ride exchange can effectively increase the number of served riders and enhance customer loyalty by engaging customers in the ride-matching process.

Suggested Citation

  • Masoud, Neda & Lloret-Batlle, Roger & Jayakrishnan, R., 2017. "Using bilateral trading to increase ridership and user permanence in ridesharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 60-77.
  • Handle: RePEc:eee:transe:v:102:y:2017:i:c:p:60-77
    DOI: 10.1016/j.tre.2017.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515302064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    2. Catherine Morency, 2007. "The ambivalence of ridesharing," Transportation, Springer, vol. 34(2), pages 239-253, March.
    3. Myerson, Roger B. & Satterthwaite, Mark A., 1983. "Efficient mechanisms for bilateral trading," Journal of Economic Theory, Elsevier, vol. 29(2), pages 265-281, April.
    4. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    5. Roberto Baldacci & Vittorio Maniezzo & Aristide Mingozzi, 2004. "An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation," Operations Research, INFORMS, vol. 52(3), pages 422-439, June.
    6. Hagerty, Kathleen M. & Rogerson, William P., 1987. "Robust trading mechanisms," Journal of Economic Theory, Elsevier, vol. 42(1), pages 94-107, June.
    7. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tafreshian, Amirmahdi & Masoud, Neda, 2022. "A truthful subsidy scheme for a peer-to-peer ridesharing market with incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 130-161.
    2. Rasulkhani, Saeid & Chow, Joseph Y.J., 2019. "Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 60-81.
    3. Tang, Wei & Xie, Ningke & Mo, Dong & Cai, Zeen & Lee, Der-Horng & Chen, Xiqun (Michael), 2023. "Optimizing subsidy strategies of the ride-sourcing platform under government regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    4. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Masoud, Neda & Jayakrishnan, R., 2017. "A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 218-236.
    6. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    7. Yuanyuan Zhang & Yuming Zhang, 2018. "Examining the Relationship between Household Vehicle Ownership and Ridesharing Behaviors in the United States," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    8. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    9. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    10. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    11. Guo, Jiantao & Zhang, Juliang & Cheng, T.C.E. & Zhao, Shouting, 2022. "Truthful double auction mechanisms for online freight platforms with transaction costs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 164-186.
    12. Yuanyuan Zhang & Yuming Zhang, 2018. "Exploring the Relationship between Ridesharing and Public Transit Use in the United States," IJERPH, MDPI, vol. 15(8), pages 1-23, August.
    13. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
    14. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution algorithm for large-scale problems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 172-192.
    15. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    2. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    4. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    5. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    6. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Tafreshian, Amirmahdi & Masoud, Neda, 2022. "A truthful subsidy scheme for a peer-to-peer ridesharing market with incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 130-161.
    8. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
    9. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    10. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    11. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    12. Sunghi An & Daisik Nam & R. Jayakrishnan & Soongbong Lee & Michael G. McNally, 2021. "A Study of the Factors Affecting Multimodal Ridesharing with Choice-Based Conjoint Analysis," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    13. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    14. Lei, Chao & Jiang, Zhoutong & Ouyang, Yanfeng, 2020. "Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 60-75.
    15. Yi, Xu & Lian, Feng & Yang, Zhongzhen, 2022. "Research on commuters’ carpooling behavior in the mobile internet context," Transport Policy, Elsevier, vol. 126(C), pages 14-25.
    16. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
    17. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    18. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    19. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    20. Naoum-Sawaya, Joe & Cogill, Randy & Ghaddar, Bissan & Sajja, Shravan & Shorten, Robert & Taheri, Nicole & Tommasi, Pierpaolo & Verago, Rudi & Wirth, Fabian, 2015. "Stochastic optimization approach for the car placement problem in ridesharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 173-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:102:y:2017:i:c:p:60-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.