IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v158y2022icp113-139.html
   My bibliography  Save this article

The vehicle routing problem of intercity ride-sharing between two cities

Author

Listed:
  • Guo, Jiaqi
  • Long, Jiancheng
  • Xu, Xiaoming
  • Yu, Miao
  • Yuan, Kai

Abstract

In this paper, we consider that a private company has developed a platform to provide intercity ride-sharing (IRS) services for riders between two cities. The riders between the two cities need to provide their travel information to the platform hours in advance. The company adopts commercial vehicles to pick up riders from one city and deliver them to the other city. The vehicle routing problem of IRS (VRP-IRS) is one of the core problems in the platform's decision making process. Due to the private nature of IRS platform, it is assumed that the platform aims to maximize the total profit of the IRS system by optimizing vehicle routing. As the IRS is long-distance travel, in order to ensure driving safety, each driver has to take a break after completing a long-distance trip. In this paper, the VRP-IRS is defined on a directed graph and formulated as a mixed integer linear programming problem. As the VRP-IRS is NP-hard, we propose a variable neighborhood search algorithm to solve the VRP-IRS. According to the characteristics of the feasible solutions to the VRP-IRS, a greedy sequential route construction method is developed to generate the initial solutions. Four trip-based neighborhood operators and four rider-based local search operators are proposed to shake the current solution to a new neighborhood and find better solutions based on the new neighborhood, respectively. Finally, numerical examples are provided to illustrate the performance of the proposed algorithm and the properties of the proposed model.

Suggested Citation

  • Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
  • Handle: RePEc:eee:transb:v:158:y:2022:i:c:p:113-139
    DOI: 10.1016/j.trb.2022.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522000327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goeke, Dominik, 2019. "Granular tabu search for the pickup and delivery problem with time windows and electric vehicles," European Journal of Operational Research, Elsevier, vol. 278(3), pages 821-836.
    2. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    3. Timo Gschwind & Stefan Irnich, 2015. "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 49(2), pages 335-354, May.
    4. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    5. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    6. Manuel A. Alba Martínez & Jean-François Cordeau & Mauro Dell'Amico & Manuel Iori, 2013. "A Branch-and-Cut Algorithm for the Double Traveling Salesman Problem with Multiple Stacks," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 41-55, February.
    7. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    8. Queiroga, Eduardo & Frota, Yuri & Sadykov, Ruslan & Subramanian, Anand & Uchoa, Eduardo & Vidal, Thibaut, 2020. "On the exact solution of vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 287(1), pages 76-89.
    9. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    10. Naccache, Salma & Côté, Jean-François & Coelho, Leandro C., 2018. "The multi-pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 269(1), pages 353-362.
    11. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    12. Paolo Toth & Daniele Vigo, 1997. "An Exact Algorithm for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 31(4), pages 372-385, November.
    13. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    14. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    15. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    16. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    17. Gajpal, Yuvraj & Abad, P.L., 2009. "Multi-ant colony system (MACS) for a vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 196(1), pages 102-117, July.
    18. Sophie N. Parragh & Jorge Pinho de Sousa & Bernardo Almada-Lobo, 2015. "The Dial-a-Ride Problem with Split Requests and Profits," Transportation Science, INFORMS, vol. 49(2), pages 311-334, May.
    19. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    20. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    21. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    22. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    23. Santos, Maria João & Curcio, Eduardo & Mulati, Mauro Henrique & Amorim, Pedro & Miyazawa, Flávio Keidi, 2020. "A robust optimization approach for the vehicle routing problem with selective backhauls," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    24. Jean-François Cordeau, 2006. "A Branch-and-Cut Algorithm for the Dial-a-Ride Problem," Operations Research, INFORMS, vol. 54(3), pages 573-586, June.
    25. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    26. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    27. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    28. Zhixing Luo & Mengyang Liu & Andrew Lim, 2019. "A Two-Phase Branch-and-Price-and-Cut for a Dial-a-Ride Problem in Patient Transportation," Service Science, INFORMS, vol. 53(1), pages 113-130, February.
    29. Petersen, Hanne L. & Madsen, Oli B.G., 2009. "The double travelling salesman problem with multiple stacks - Formulation and heuristic solution approaches," European Journal of Operational Research, Elsevier, vol. 198(1), pages 139-147, October.
    30. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    31. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    32. Fleszar, Krzysztof & Osman, Ibrahim H. & Hindi, Khalil S., 2009. "A variable neighbourhood search algorithm for the open vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 195(3), pages 803-809, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    2. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Zhang, Zhenzhen & Liu, Mengyang & Lim, Andrew, 2015. "A memetic algorithm for the patient transportation problem," Omega, Elsevier, vol. 54(C), pages 60-71.
    4. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    5. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    6. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    7. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    8. Dong, Xiaotong & Chow, Joseph Y.J. & Waller, S. Travis & Rey, David, 2022. "A chance-constrained dial-a-ride problem with utility-maximising demand and multiple pricing structures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Rahman, Md Hishamur & Chen, Shijie & Sun, Yanshuo & Siddiqui, Muhammad Imran Younus & Mohebbi, Matthew & Marković, Nikola, 2023. "Integrating dial-a-ride with transportation network companies for cost efficiency: A Maryland case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    10. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    11. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    12. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    13. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    14. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
    15. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Naoum-Sawaya, Joe & Cogill, Randy & Ghaddar, Bissan & Sajja, Shravan & Shorten, Robert & Taheri, Nicole & Tommasi, Pierpaolo & Verago, Rudi & Wirth, Fabian, 2015. "Stochastic optimization approach for the car placement problem in ridesharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 173-184.
    17. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
    18. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    19. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    20. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:158:y:2022:i:c:p:113-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.