IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v107y2017icp120-140.html
   My bibliography  Save this article

Flexibility and real options analysis in emergency medical services systems using decision rules and multi-stage stochastic programming

Author

Listed:
  • Zhang, Sizhe
  • Cardin, Michel-Alexandre

Abstract

A novel approach to EMS infrastructure systems design, planning, and operations under long-term uncertainty is introduced based on multi-stage stochastic programming and decision rules, accounting for strategic flexibility (also known as real options – RO). Different from standard RO analysis, the approach mimics real-world decision-making by exercising flexibility based on conditional-go decision rules. The objective is to minimize the expected total costs over the system’s life cycle, and the outputs are the optimal initial configuration and decision rules. A flexible solution provides lower expected cost than stochastically optimal rigid solutions, especially valuable when required incident coverage rate is >95%.

Suggested Citation

  • Zhang, Sizhe & Cardin, Michel-Alexandre, 2017. "Flexibility and real options analysis in emergency medical services systems using decision rules and multi-stage stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 120-140.
  • Handle: RePEc:eee:transe:v:107:y:2017:i:c:p:120-140
    DOI: 10.1016/j.tre.2017.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517300789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. Opher Baron & Oded Berman & Seokjin Kim & Dmitry Krass, 2009. "Ensuring feasibility in location problems with stochastic demands and congestion," IISE Transactions, Taylor & Francis Journals, vol. 41(5), pages 467-481.
    3. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    4. Stewart C. Myers, 1984. "Finance Theory and Financial Strategy," Interfaces, INFORMS, vol. 14(1), pages 126-137, February.
    5. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    6. A Başar & B Çatay & T Ünlüyurt, 2011. "A multi-period double coverage approach for locating the emergency medical service stations in Istanbul," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 627-637, April.
    7. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    8. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    9. Rajan Batta & June M. Dolan & Nirup N. Krishnamurthy, 1989. "The Maximal Expected Covering Location Problem: Revisited," Transportation Science, INFORMS, vol. 23(4), pages 277-287, November.
    10. Oded Berman & Iman Hajizadeh & Dmitry Krass, 2013. "The maximum covering problem with travel time uncertainty," IISE Transactions, Taylor & Francis Journals, vol. 45(1), pages 81-96.
    11. Cardin, Michel-Alexandre & Zhang, Sizhe & Nuttall, William J., 2017. "Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance," Energy Economics, Elsevier, vol. 64(C), pages 226-237.
    12. Beraldi, P. & Bruni, M.E., 2009. "A probabilistic model applied to emergency service vehicle location," European Journal of Operational Research, Elsevier, vol. 196(1), pages 323-331, July.
    13. Iannoni, Ana Paula & Morabito, Reinaldo, 2007. "A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 755-771, November.
    14. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    15. Joseph Y. J. Chow & Hamid R. Sayarshad, 2016. "Reference Policies for Non-myopic Sequential Network Design and Timing Problems," Networks and Spatial Economics, Springer, vol. 16(4), pages 1183-1209, December.
    16. Chow, Joseph Y.J. & Regan, Amelia C., 2011. "Network-based real option models," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 682-695, May.
    17. Rau, Philipp & Spinler, Stefan, 2016. "Investment into container shipping capacity: A real options approach in oligopolistic competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 130-147.
    18. Kort, Peter M. & Murto, Pauli & Pawlina, Grzegorz, 2010. "Uncertainty and stepwise investment," European Journal of Operational Research, Elsevier, vol. 202(1), pages 196-203, April.
    19. Laura McLay, 2009. "A maximum expected covering location model with two types of servers," IISE Transactions, Taylor & Francis Journals, vol. 41(8), pages 730-741.
    20. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    21. Chow, Joseph Y.J. & Regan, Amelia C. & Ranaiefar, Fatemeh & Arkhipov, Dmitri I., 2011. "A network option portfolio management framework for adaptive transportation planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 765-778, October.
    22. Khansa, Lara & Liginlal, Divakaran, 2009. "Valuing the flexibility of investing in security process innovations," European Journal of Operational Research, Elsevier, vol. 192(1), pages 216-235, January.
    23. Reza Farahani & Zvi Drezner & Nasrin Asgari, 2009. "Single facility location and relocation problem with time dependent weights and discrete planning horizon," Annals of Operations Research, Springer, vol. 167(1), pages 353-368, March.
    24. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    25. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    26. Michael O. Ball & Feng L. Lin, 1993. "A Reliability Model Applied to Emergency Service Vehicle Location," Operations Research, INFORMS, vol. 41(1), pages 18-36, February.
    27. Michel-Alexandre Cardin & Qihui Xie & Tsan Sheng Ng & Shuming Wang & Junfei Hu, 2017. "An approach for analyzing and managing flexibility in engineering systems design based on decision rules and multistage stochastic programming," IISE Transactions, Taylor & Francis Journals, vol. 49(1), pages 1-12, January.
    28. Gunawardane, Gamini, 1982. "Dynamic versions of set covering type public facility location problems," European Journal of Operational Research, Elsevier, vol. 10(2), pages 190-195, June.
    29. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yan & Wang, Junwei, 2019. "Integrated reconfiguration of both supply and demand for evacuation planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 82-94.
    2. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    3. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    4. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    5. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    6. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    7. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    9. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    10. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    11. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    12. Shayesta Wajid & N. Nezamuddin, 2023. "Optimizing emergency services for road safety using a decomposition method: a case study of Delhi," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 155-173, March.
    13. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    14. Martin van Buuren & Caroline Jagtenberg & Thije van Barneveld & Rob van der Mei & Sandjai Bhulai, 2018. "Ambulance Dispatch Center Pilots Proactive Relocation Policies to Enhance Effectiveness," Interfaces, INFORMS, vol. 48(3), pages 235-246, June.
    15. Guo, Qian-Wen & Chen, Shumin & Schonfeld, Paul & Li, Zhongfei, 2018. "How time-inconsistent preferences affect investment timing for rail transit," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 172-192.
    16. Sondes Hammami & Aida Jebali, 2021. "Designing modular capacitated emergency medical service using information on ambulance trip," Operational Research, Springer, vol. 21(3), pages 1723-1742, September.
    17. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    18. Li, Zhi-Chun & Guo, Qian-Wen & Lam, William H.K. & Wong, S.C., 2015. "Transit technology investment and selection under urban population volatility: A real option perspective," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 318-340.
    19. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    20. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:107:y:2017:i:c:p:120-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.