IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v41y2009i5p467-481.html
   My bibliography  Save this article

Ensuring feasibility in location problems with stochastic demands and congestion

Author

Listed:
  • Opher Baron
  • Oded Berman
  • Seokjin Kim
  • Dmitry Krass

Abstract

A location problem with stochastic demand and congestion where mobile servers respond to service calls originating from nodes is considered. The problem is of the set-covering type: only servers within the coverage radius of the demand-generating node may respond to a call. The service level constraint requires that at least one server must be available to respond to an arriving call, with some prespecified probability. The objective is to minimize the total number of servers. It is shown that earlier models quite often overestimate servers' availability and thus may lead to infeasible solutions (i.e., solutions that fail to satisfy the service level constraint). System stability conditions and lower bounds on system availability are developed by analyzing the underlying partially accessible queueing system. These lead to the development of two new models for which feasibility is guaranteed. Simulation-based computational experiments show that the proposed models achieve feasibility without significantly increasing the total number of servers.[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for the following free supplemental resource: Appendix of Tables of Computational Results for Section 7.]

Suggested Citation

  • Opher Baron & Oded Berman & Seokjin Kim & Dmitry Krass, 2009. "Ensuring feasibility in location problems with stochastic demands and congestion," IISE Transactions, Taylor & Francis Journals, vol. 41(5), pages 467-481.
  • Handle: RePEc:taf:uiiexx:v:41:y:2009:i:5:p:467-481
    DOI: 10.1080/07408170802382758
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170802382758
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170802382758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sizhe & Cardin, Michel-Alexandre, 2017. "Flexibility and real options analysis in emergency medical services systems using decision rules and multi-stage stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 120-140.
    2. Miguel A. Lejeune & Francois Margot, 2018. "Aeromedical Battlefield Evacuation Under Endogenous Uncertainty in Casualty Delivery Times," Management Science, INFORMS, vol. 64(12), pages 5481-5496, December.
    3. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:41:y:2009:i:5:p:467-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.