IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v47y2013icp10-18.html
   My bibliography  Save this article

Dynamic formation mechanism of airport competitiveness: The case of China

Author

Listed:
  • Cui, Qiang
  • Kuang, Hai-bo
  • Wu, Chun-you
  • Li, Ye

Abstract

With the rapid development of Chinese economy, the demand of air transportation has increased enormously and airports are facing intensive competition, so the issue of how to enhance airport competitiveness has attracted serious concern of the public. The formation mechanism of airport competitiveness is very complex and the research is insufficient on this topic. In this paper, index system of airport competitiveness is built from four aspects: Regional Development, Production Factors, Demand Conditions and Support Industry. Dynamic formation mechanism of airport competitiveness is studied through Structure Equation Model as well as System Dynamic with the historical data of 25 Chinese airports from 2006 to 2010. Then the influencing mechanism of some important influencing factors is analyzed with the help of Vensim software, which verifies the rationality of the model. The results show that airport investment and city R&D inputs are the two most important influencing factors of airport competitiveness, which could provide guidance for decision makers on airport competitiveness cultivation.

Suggested Citation

  • Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2013. "Dynamic formation mechanism of airport competitiveness: The case of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 10-18.
  • Handle: RePEc:eee:transa:v:47:y:2013:i:c:p:10-18
    DOI: 10.1016/j.tra.2012.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412001607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coldren, Gregory M. & Koppelman, Frank S., 2005. "Modeling the competition among air-travel itinerary shares: GEV model development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 345-365, May.
    2. Perl, Anthony, 1998. "Redesigning an airport for international competitiveness: the politics of administrative innovation at CDG," Journal of Air Transport Management, Elsevier, vol. 4(4), pages 189-199.
    3. Sarkis, Joseph & Talluri, Srinivas, 2004. "Performance based clustering for benchmarking of US airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 329-346, June.
    4. Inglada, Vicente & Rey, Belen & Rodri­guez-Alvarez, Ana & Coto-Millan, Pablo, 2006. "Liberalisation and efficiency in international air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 95-105, February.
    5. Mikio Takebayashi, 2011. "Evaluation Of Asian Airports As Gateways: Application Of Network Equilibrium Model," Pacific Economic Review, Wiley Blackwell, vol. 16(1), pages 64-82, February.
    6. Elton Fernandes & Ricardo Pacheco, 2007. "Airport management: a strategic approach," Transportation, Springer, vol. 34(1), pages 129-142, January.
    7. Oum, Tae Hoon & Yu, Chunyan, 1998. "Cost competitiveness of major airlines: an international comparison," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 407-422, August.
    8. McLay, Peter & Reynolds-Feighan, Aisling, 2006. "Competition between airport terminals: The issues facing Dublin Airport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 181-203, February.
    9. Zhang, Anming, 2003. "Analysis of an international air-cargo hub: the case of Hong Kong," Journal of Air Transport Management, Elsevier, vol. 9(2), pages 123-138.
    10. Pacheco, R. R. & Fernandes, E., 2003. "Managerial efficiency of Brazilian airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 667-680, October.
    11. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    12. Park, Yonghwa, 2003. "An analysis for the competitive strength of Asian major airports," Journal of Air Transport Management, Elsevier, vol. 9(6), pages 353-360.
    13. Lee, Hunsoo & Yang, Han Mo, 2003. "Strategies for a global logistics and economic hub: Incheon International Airport," Journal of Air Transport Management, Elsevier, vol. 9(2), pages 113-121.
    14. Barrett, Sean D, 2000. "Airport competition in the deregulated European aviation market," Journal of Air Transport Management, Elsevier, vol. 6(1), pages 13-27.
    15. Marti­n, Juan Carlos & Román, Concepción, 2003. "Hub location in the South-Atlantic airline market: A spatial competition game," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 865-888, December.
    16. Lieshout, Rogier & Matsumoto, Hidenobu, 2012. "New international services and the competitiveness of Tokyo International Airport," Journal of Transport Geography, Elsevier, vol. 22(C), pages 53-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    2. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    3. Jiang, Yonglei & Liao, Feixiong & Xu, Qi & Yang, Zhongzhen, 2019. "Identification of technology spillover among airport alliance from the perspective of efficiency evaluation: The case of China," Transport Policy, Elsevier, vol. 80(C), pages 49-58.
    4. Bing Zhao & Hao Wu, 2022. "A System Dynamics Model of Multi-Airport Logistics System under the Impact of COVID-19: A Case of Jing-Jin-Ji Multi-Airport System in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    5. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    6. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    7. Li, Ye & Cui, Qiang, 2018. "Airline efficiency with optimal employee allocation: An Input-shared Network Range Adjusted Measure," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 150-162.
    8. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    9. Yang, Xu-Hua & Chen, Guang & Chen, Sheng-Yong & Wang, Wan-Liang & Wang, Lei, 2014. "Study on some bus transport networks in China with considering spatial characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 1-10.
    10. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
    11. A. Sardi & E. Sorano, 2021. "Dynamic Performance Management: An Approach for Managing the Common Goods," Papers 2102.04090, arXiv.org.
    12. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    13. Nesset, Erik & Helgesen, Øyvind, 2014. "Effects of switching costs on customer attitude loyalty to an airport in a multi-airport region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 240-253.
    14. Alberto Sardi & Enrico Sorano, 2019. "Dynamic Performance Management: An Approach for Managing the Common Goods," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    15. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    16. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    17. Cui, Qiang & Li, Ye & Lin, Jing-ling, 2018. "Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 96-107.
    18. Zhang, Baocheng & Wu, Hao & Yang, Xinsheng & Zhai, Wenpeng & Xia, Qingjun & Li, Yafei, 2014. "An estimation of returns to scale of airport airsides under multiple optimal solutions in DEA," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 149-156.
    19. Cui, Qiang & Li, Ye, 2018. "Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability," Energy Economics, Elsevier, vol. 75(C), pages 534-546.
    20. Cui, Qiang, 2021. "A data-based comparison of the five undesirable output disposability approaches in airline environmental efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan Tsui, Wai Hong & Balli, Hatice Ozer & Gilbey, Andrew & Gow, Hamish, 2014. "Operational efficiency of Asia–Pacific airports," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 16-24.
    2. Lieshout, Rogier & Matsumoto, Hidenobu, 2012. "New international services and the competitiveness of Tokyo International Airport," Journal of Transport Geography, Elsevier, vol. 22(C), pages 53-64.
    3. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    4. Ahn, Young-Hyo & Min, Hokey, 2014. "Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 12-22.
    5. Elton Fernandes & Ricardo Pacheco, 2007. "Airport management: a strategic approach," Transportation, Springer, vol. 34(1), pages 129-142, January.
    6. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    7. De Nicola, Arianna & Gitto, Simone & Mancuso, Paolo, 2013. "Airport quality and productivity changes: A Malmquist index decomposition assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 67-75.
    8. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2017. "The impact of operational exposure and value-of-time on customer choice: Evidence from the airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 455-471.
    9. Mayer, Robert, 2016. "Airport classification based on cargo characteristics," Journal of Transport Geography, Elsevier, vol. 54(C), pages 53-65.
    10. Chao, Ching-Cheng & Yu, Po-Cheng, 2013. "Quantitative evaluation model of air cargo competitiveness and comparative analysis of major Asia-Pacific airports," Transport Policy, Elsevier, vol. 30(C), pages 318-326.
    11. Gitto, Simone & Mancuso, Paolo, 2009. "Productivity change in Italian airports," MPRA Paper 34367, University Library of Munich, Germany.
    12. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    13. Zou, Bo & Elke, Matthew & Hansen, Mark & Kafle, Nabin, 2014. "Evaluating air carrier fuel efficiency in the US airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 306-330.
    14. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    15. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    16. Bringmann, Katja & De Langhe, Katrien & Kupfer, Franziska & Sys, Christa & Van de Voorde, Eddy & Vanelslander, Thierry, 2018. "Cooperation between airports: A focus on the financial intertwinement of European airport operators," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 59-71.
    17. Abbott, Malcolm, 2015. "Reform and efficiency of New Zealand's airports," Utilities Policy, Elsevier, vol. 36(C), pages 1-9.
    18. Paolo Malighetti & Gianmaria Martini & Stefano Paleari & Renato Redondi, 2007. "An Empirical Investigation on the Efficiency, Capacity Ownership of Italian Airports," Rivista di Politica Economica, SIPI Spa, vol. 97(1), pages 157-188, January-F.
    19. Zhang, Qiong & Yang, Hangjun & Wang, Qiang & Zhang, Anming, 2014. "Market power and its determinants in the Chinese airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 1-13.
    20. Tsui, Wai Hong Kan & Fung, Michael Ka Yiu, 2016. "Analysing passenger network changes: The case of Hong Kong," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:47:y:2013:i:c:p:10-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.