IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v32y1998i6p407-422.html
   My bibliography  Save this article

Cost competitiveness of major airlines: an international comparison

Author

Listed:
  • Oum, Tae Hoon
  • Yu, Chunyan

Abstract

This paper compares unit cost competitiveness of the world's 22 major airlines over the 1986-93 period. First, a unit cost index for aggregate output is computed via a multilateral index procedure. A translog variable cost function is estimated and used to decompose the unit cost differentials into potential sources: input prices, network and output attributes, and efficiency. The results of the unit cost decomposition are used to construct a cost competitiveness indicator after removing the effects of network and output attributes. Our results for 1993 are: (a) Asian carriers (except Japan Airlines and All Nippon Airways) were generally more cost competitive than the major U.S. carriers, mostly due to their substantially lower input prices; (b) Japan Airlines and All Nippon Airways were over 50% less cost competitive than American Airlines mainly because of their high input prices; (c) major European carriers were 7% (British Airways)-42% (Scandinavian Airlines Systems) less cost competitive than American Airlines, because of higher input prices and lower efficiency; (d) among the U.S. carriers, American Airlines, United Airlines and Delta were similar in cost competitiveness, while Northwest and Continental enjoyed, respectively, 5 and 12% cost competitiveness over American Airlines; (e) exchange rate fluctuation has had considerable effects on the cost competitive position of Japan Airlines and Lufthansa.

Suggested Citation

  • Oum, Tae Hoon & Yu, Chunyan, 1998. "Cost competitiveness of major airlines: an international comparison," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 407-422, August.
  • Handle: RePEc:eee:transa:v:32:y:1998:i:6:p:407-422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00007-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Good & M. Nadiri & Lars-Hendrik Röller & Robin Sickles, 1993. "Efficiency and productivity growth comparisons of European and U.S. Air carriers: A first look at the data," Journal of Productivity Analysis, Springer, vol. 4(1), pages 115-125, June.
    2. Oum, Tae Hoon & Zhang, Yimin, 1995. "Competition and Allocative Efficiency: The Case of the U.S. Telephone Industry," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 82-96, February.
    3. Encaoua, David, 1991. "Liberalizing European airlines : Cost and factor productivity evidence," International Journal of Industrial Organization, Elsevier, vol. 9(1), pages 109-124, March.
    4. Baltagi, Badi H & Griffin, James M & Rich, Daniel P, 1995. "Airline Deregulation: The Cost Pieces of the Puzzle," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 36(1), pages 245-260, February.
    5. Good, David H. & Rhodes, Edwardo L., 1991. "Productive Efficiency, Technological Change and the Competitiveness of U.S. Airlines in the Pacific Rim," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 31(2).
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    7. Laurits R. Christensen & Dale W. Jorgenson, 1969. "The Measurement Of U.S. Real Capital Input, 1929–1967," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 15(4), pages 293-320, December.
    8. Good, David H. & Roller, Lars-Hendrik & Sickles, Robin C., 1995. "Airline efficiency differences between Europe and the US: Implications for the pace of EC integration and domestic regulation," European Journal of Operational Research, Elsevier, vol. 80(3), pages 508-518, February.
    9. Robert Summers & Alan Heston, 1991. "The Penn World Table (Mark 5): An Expanded Set of International Comparisons, 1950–1988," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 327-368.
    10. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oum, Tae Hoon & Yu, Chunyan, 1995. "A productivity comparison of the world's major airlines," Journal of Air Transport Management, Elsevier, vol. 2(3), pages 181-195.
    2. Oum, Tae Hoon & Zhang, Anming & Zhang, Yimin, 2000. "Optimal demand for operating lease of aircraft," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 17-29, January.
    3. Chang, Yu-Hern & Yeh, Chung-Hsing, 2001. "Evaluating airline competitiveness using multiattribute decision making," Omega, Elsevier, vol. 29(5), pages 405-415, October.
    4. Tim Coelli & Sergio Perelman & Elliot Romano, 1999. "Accounting for Environmental Influences in Stochastic Frontier Models: With Application to International Airlines," Journal of Productivity Analysis, Springer, vol. 11(3), pages 251-273, June.
    5. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    6. Barros, Carlos P. & Liang, Qi Bin & Peypoch, Nicolas, 2013. "The technical efficiency of US Airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 139-148.
    7. Low, Joyce M.W. & Lee, Byung Kwon, 2014. "Effects of internal resources on airline competitiveness," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 23-32.
    8. David H. Good & M. Ishaq Nadiri & Robin C. Sickles, 1996. "Index Number and Factor Demand Approaches to the Estimation of Productivity," NBER Working Papers 5790, National Bureau of Economic Research, Inc.
    9. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    10. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    11. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    12. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    13. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    14. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    15. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
    16. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    17. Link, Heike & Götze, Wolfgang & Himanen, Veli, 2009. "Estimating the marginal costs of airport operation using multivariate time series models with correlated error terms," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 41-46.
    18. Scotti, Davide & Volta, Nicola, 2017. "Profitability change in the global airline industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 1-12.
    19. Assaf, A. George & Josiassen, Alexander, 2012. "European vs. U.S. airlines: Performance comparison in a dynamic market," Tourism Management, Elsevier, vol. 33(2), pages 317-326.
    20. Liu, Wei & Gao, Lixiang & Song, Hang & Huang, Mingdong, 2021. "Factor market distortion, technology change, and green growth in the Chinese civil airline industry," Journal of Asian Economics, Elsevier, vol. 77(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:32:y:1998:i:6:p:407-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.