IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v55y2016icp12-19.html
   My bibliography  Save this article

Intentions to introduce electric vehicles in the commercial sector: A model based on the theory of planned behaviour

Author

Listed:
  • Kaplan, Sigal
  • Gruber, Johannes
  • Reinthaler, Martin
  • Klauenberg, Jens

Abstract

Light and heavy duty commercial vehicles are a cause of concern in urban areas because of their cumulative stress on the system in terms of air pollution, congestion, and noise. This cumulative stress is expected to increase with the expected growth in commercial vehicle movements. While electric commercial vehicles (ECVs) may provide a possible technological solution, the research on the market penetration of ECVs is scarce. This study proposes a comprehensive framework for understanding the motivations and barriers of small and medium-size firms to the introduction of ECVs in commercial vehicle fleets. The framework is based on the Theory of Planned Behaviour (TPB), and it is modelled with a structural equation model with latent variables. The model is estimated on the basis of 1443 responses from a large-scale survey in Austria, Denmark, and Germany. The results establish a linkage between the ECV procurement intentions, the TPB constructs (i.e., positive attitudes and subjective norms towards ECVs, familiarity with ECVs and perceived operational ease) and their relative importance. It also provides information regarding the relationship between the TPB constructs and the characteristics of the fleet manager as the individual decision maker, the industrial sector and the fleet management and tour pattern. Last, it provides insights regarding the transferability of the revealed TPB- ECV procurement intentions across industrial sectors and across countries.

Suggested Citation

  • Kaplan, Sigal & Gruber, Johannes & Reinthaler, Martin & Klauenberg, Jens, 2016. "Intentions to introduce electric vehicles in the commercial sector: A model based on the theory of planned behaviour," Research in Transportation Economics, Elsevier, vol. 55(C), pages 12-19.
  • Handle: RePEc:eee:retrec:v:55:y:2016:i:c:p:12-19
    DOI: 10.1016/j.retrec.2016.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885916300373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2016.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    2. Wikström, Martina & Hansson, Lisa & Alvfors, Per, 2014. "Socio-technical experiences from electric vehicle utilisation in commercial fleets," Applied Energy, Elsevier, vol. 123(C), pages 82-93.
    3. Gass, V. & Schmidt, J. & Schmid, E., 2014. "Analysis of alternative policy instruments to promote electric vehicles in Austria," Renewable Energy, Elsevier, vol. 61(C), pages 96-101.
    4. Figliozzi, Miguel Andres, 2007. "Analysis of the efficiency of urban commercial vehicle tours: Data collection, methodology, and policy implications," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 1014-1032, November.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Kanaroglou, Pavlos S. & Buliung, Ron N., 2008. "Estimating the contribution of commercial vehicle movement to mobile emissions in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(2), pages 260-276, March.
    7. Nesbitt, Kevin & Sperling, Daniel, 2001. "Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels," Institute of Transportation Studies, Working Paper Series qt15k63162, Institute of Transportation Studies, UC Davis.
    8. Nasco, Suzanne Altobello & Toledo, Elizabeth Grandón & Mykytyn Jr., Peter P., 2008. "Predicting electronic commerce adoption in Chilean SMEs," Journal of Business Research, Elsevier, vol. 61(6), pages 697-705, June.
    9. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    10. Bae, Sang Hoo & Sarkis, Joseph & Yoo, Chung Sik, 2011. "Greening transportation fleets: Insights from a two-stage game theoretic model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 793-807.
    11. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    12. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    2. Kaplan, Sigal & Moraes Monteiro, Mayara & Anderson, Marie Karen & Nielsen, Otto Anker & Medeiros Dos Santos, Enilson, 2017. "The role of information systems in non-routine transit use of university students: Evidence from Brazil and Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 34-48.
    3. Barfod, Michael B. & Kaplan, Sigal & Frenzel, Ina & Klauenberg, Jens, 2016. "COPE-SMARTER – A decision support system for analysing the challenges, opportunities and policy initiatives: A case study of electric commercial vehicles market diffusion in Denmark," Research in Transportation Economics, Elsevier, vol. 55(C), pages 3-11.
    4. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
    5. López, Rafael & Valarezo, Ángel & Pérez-Amaral, Teodosio, 2021. "Online education adoption in Spain 2008-2019. Drivers and impediments," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238038, International Telecommunications Society (ITS).
    6. Jaiswal, Deepak & Kaushal, Vikrant & Kant, Rishi & Kumar Singh, Pankaj, 2021. "Consumer adoption intention for electric vehicles: Insights and evidence from Indian sustainable transportation," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Kolade, Oluwaseun & Odumuyiwa, Victor & Abolfathi, Soroush & Schröder, Patrick & Wakunuma, Kutoma & Akanmu, Ifeoluwa & Whitehead, Timothy & Tijani, Bosun & Oyinlola, Muyiwa, 2022. "Technology acceptance and readiness of stakeholders for transitioning to a circular plastic economy in Africa," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Higueras-Castillo, Elena & Kalinic, Zoran & Marinkovic, Veljko & Liébana-Cabanillas, Francisco J., 2020. "A mixed analysis of perceptions of electric and hybrid vehicles," Energy Policy, Elsevier, vol. 136(C).
    9. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    10. Austmann, Leonhard M. & Vigne, Samuel A., 2021. "Does environmental awareness fuel the electric vehicle market? A Twitter keyword analysis," Energy Economics, Elsevier, vol. 101(C).
    11. Vu Linh Toan Le & Tien Hoang Nguyen & Khanh Duy Pham, 2023. "What Drives Industry 4.0 Technologies Adoption? Evidence from a SEM-Neural Network Approach in the Context of Vietnamese Firms," Sustainability, MDPI, vol. 15(7), pages 1-32, March.
    12. Mäntymäki, Matti & Salo, Jari, 2013. "Purchasing behavior in social virtual worlds: An examination of Habbo Hotel," International Journal of Information Management, Elsevier, vol. 33(2), pages 282-290.
    13. Fatima Zahra Barrane & Gahima Egide Karuranga & Diane Poulin, 2018. "Technology Adoption and Diffusion: A New Application of the UTAUT Model," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-19, December.
    14. Joan Torrent-Sellens & Cristian Salazar-Concha & Pilar Ficapal-Cusí & Francesc Saigí-Rubió, 2021. "Using Digital Platforms to Promote Blood Donation: Motivational and Preliminary Evidence from Latin America and Spain," IJERPH, MDPI, vol. 18(8), pages 1-17, April.
    15. Globisch, Joachim & Dütschke, Elisabeth & Schleich, Joachim, 2018. "Acceptance of electric passenger cars in commercial fleets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 122-129.
    16. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    18. Chia-Chien Hsu & Brian Sandford & Chia-Ju Ling & Ching-Torng Lin, 2021. "Can the Unified Theory of Acceptance and Use of Technology (UTAUT) Help Explain Subjective Well-Being in Senior Citizens due to Gateball Participation?," IJERPH, MDPI, vol. 18(17), pages 1-15, August.
    19. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    20. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.

    More about this item

    Keywords

    Electric vehicles; Vehicle fleet; Firms; Theory of planned behaviour; Intentions; Structural equation models;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:55:y:2016:i:c:p:12-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.