IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/91402.html
   My bibliography  Save this paper

Can product service systems support electric vehicle adoption?

Author

Listed:
  • Ensslen, Axel
  • Gnann, Till
  • Jochem, Patrick
  • Plötz, Patrick
  • Dütschke, Elisabeth
  • Fichtner, Wolf

Abstract

Plug-in electric vehicles are seen as a promising option to reduce oil dependency, greenhouse gas emissions, particulate matter pollution, nitrogen oxide emissions and noise caused by individual road transportation. But how is it possible to foster diffusion of plug-in electric vehicles? Our research focuses on the question whether e-mobility product service systems (i.e. plug-in electric vehicles, interconnected charging infrastructure as well as charging platform and additional services) are supportive to plug-in electric vehicle adoption in professional environments. Our user oriented techno-economic analysis of costs and benefits is based on empirical data originating from 109 organizational fleets participating in a field trial in south-west Germany with in total 327 plug-in electric vehicles and 181 charging points. The results show that organizations indicate a high willingness to pay for e-mobility product service systems. Organizations encounter non-monetary benefits, which on average overcompensate the current higher total cost of ownership of plug-in electric vehicles compared to internal combustion engine vehicles. However, the willingness to pay for e-mobility charging infrastructure and services alone is currently not sufficient to cover corresponding actual costs. The paper relates the interconnected charging infrastructure solutions under study to the development of the internet of things and smarter cities and draws implications on this development.

Suggested Citation

  • Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2018. "Can product service systems support electric vehicle adoption?," MPRA Paper 91402, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:91402
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/91402/1/MPRA_paper_91402.PDF
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    2. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    3. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    4. Wikström, Martina & Hansson, Lisa & Alvfors, Per, 2014. "Socio-technical experiences from electric vehicle utilisation in commercial fleets," Applied Energy, Elsevier, vol. 123(C), pages 82-93.
    5. Arnold Tukker, 2004. "Eight types of product–service system: eight ways to sustainability? Experiences from SusProNet," Business Strategy and the Environment, Wiley Blackwell, vol. 13(4), pages 246-260, July.
    6. Christoph Willing & Tobias Brandt & Dirk Neumann, 2017. "Intermodal Mobility," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 173-179, June.
    7. Salah, Florian & Flath, Christoph M. & Schuller, Alexander & Will, Christian & Weinhardt, Christof, 2017. "Morphological analysis of energy services: Paving the way to quality differentiation in the power sector," Energy Policy, Elsevier, vol. 106(C), pages 614-624.
    8. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    9. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    10. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    11. Felix Wortmann & Kristina Flüchter, 2015. "Internet of Things," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(3), pages 221-224, June.
    12. Nesbitt, Kevin & Sperling, Daniel, 2001. "Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels," Institute of Transportation Studies, Working Paper Series qt15k63162, Institute of Transportation Studies, UC Davis.
    13. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    14. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Timm Teubner & Christoph Flath, 2015. "The Economics of Multi-Hop Ride Sharing," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(5), pages 311-324, October.
    16. Koetse, Mark J. & Hoen, Anco, 2014. "Preferences for alternative fuel vehicles of company car drivers," Resource and Energy Economics, Elsevier, vol. 37(C), pages 279-301.
    17. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    18. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    19. Steinhilber, Simone & Wells, Peter & Thankappan, Samarthia, 2013. "Socio-technical inertia: Understanding the barriers to electric vehicles," Energy Policy, Elsevier, vol. 60(C), pages 531-539.
    20. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    21. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    22. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    23. Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud, 2010. "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 7142-7151, November.
    24. Annalisa Cocchia, 2014. "Smart and Digital City: A Systematic Literature Review," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 13-43, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plananska, Jana & Gamma, Karoline, 2022. "Product bundling for accelerating electric vehicle adoption: A mixed-method empirical analysis of Swiss customers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Bahamonde-Birke, Francisco J., 2020. "Who will bell the cat? On the environmental and sustainability risks of electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 79-81.
    3. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    4. Doll, Claus & Krauss, Konstantin, 2022. "Nachhaltige Mobilität und innovative Geschäftsmodelle," Studien zum deutschen Innovationssystem 10-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    5. Gu, Yan & Ho, Kung-Cheng & Xia, Senmao & Yan, Cheng, 2022. "Do public environmental concerns promote new energy enterprises' development? Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 109(C).
    6. Cruz-Jesus, Frederico & Figueira-Alves, Hugo & Tam, Carlos & Pinto, Diego Costa & Oliveira, Tiago & Venkatesh, Viswanath, 2023. "Pragmatic and idealistic reasons: What drives electric vehicle drivers' satisfaction and continuance intention?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    7. Daqing Zu & Kang Cao & Jian Xu, 2021. "The Impacts of Transportation Sustainability on Higher Education in China," Sustainability, MDPI, vol. 13(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    2. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    3. Serradilla, Javier & Wardle, Josey & Blythe, Phil & Gibbon, Jane, 2017. "An evidence-based approach for investment in rapid-charging infrastructure," Energy Policy, Elsevier, vol. 106(C), pages 514-524.
    4. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    5. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    6. Lin, Boqiang & Tan, Ruipeng, 2017. "Estimation of the environmental values of electric vehicles in Chinese cities," Energy Policy, Elsevier, vol. 104(C), pages 221-229.
    7. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    8. Goldschmidt, Rüdiger & Richter, Andreas & Pfeil, Raphael, 2019. "Active stakeholder involvement and organisational tasks as factors for an effective communication and governance strategy in the promotion of e-taxis. Results from a field research lab," Energy Policy, Elsevier, vol. 135(C).
    9. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    10. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    11. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    12. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    13. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    14. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    15. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    16. Tobias Buchmann & Patrick Wolf & Stefan Fidaschek, 2021. "Stimulating E-Mobility Diffusion in Germany (EMOSIM): An Agent-Based Simulation Approach," Energies, MDPI, vol. 14(3), pages 1-25, January.
    17. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    19. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.

    More about this item

    Keywords

    Electric mobility; electric vehicle; Smart city; Platform service; Business model; Product service system;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:91402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.