IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p4091-4099.html
   My bibliography  Save this article

Inter-fuel substitution path analysis of the korea cement industry

Author

Listed:
  • Huh, Sung-Yoon
  • Lee, Hyejin
  • Shin, Jungwoo
  • Lee, Donghyun
  • Jang, Jinyoung

Abstract

Many countries have employed various policy measures to reduce industrial CO2 emissions. The cement industry plays a crucial role in emissions reduction because it accounts for a substantial proportion of global emissions. This study analyzes the inter-fuel substitution paths for the cement industry, along with its impacts on emissions reduction. A mixed multiple discrete-continuous extreme value (MDCEV) model is used to accommodate for the heterogeneity of firms’ preferences for fuel mixes. The proposed model is empirically verified using firm-level data collected from 1998 to 2011 for Korean cement production firms. The results show that firms’ marginal utilities from using bituminous coal are still larger than those from other alternative fuels. The determinants of the firms’ alternative fuel choices are different according to the individual fuel types, but the price of bituminous coal has a primary impact, generally speaking. Scenario analysis shows that 10% and 20% increases in bituminous coal prices will lead to roughly 1.30 million and 1.58 million tons of CO2 reduction for the Korean cement industry, respectively. This study analyzes the selection and consumption patterns according to fuel types among cement producers, and also predicts its impacts on emissions reduction. Further, our study also provides policy implications for the government, which plays a crucial role in designing incentives for firms to use alternative fuels more often.

Suggested Citation

  • Huh, Sung-Yoon & Lee, Hyejin & Shin, Jungwoo & Lee, Donghyun & Jang, Jinyoung, 2018. "Inter-fuel substitution path analysis of the korea cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4091-4099.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:4091-4099
    DOI: 10.1016/j.rser.2017.10.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117314387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.10.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
    2. Pardo, Nicolás & Moya, José Antonio & Mercier, Arnaud, 2011. "Prospective on the energy efficiency and CO2 emissions in the EU cement industry," Energy, Elsevier, vol. 36(5), pages 3244-3254.
    3. Szabo, Laszlo & Hidalgo, Ignacio & Ciscar, Juan Carlos & Soria, Antonio, 2006. "CO2 emission trading within the European Union and Annex B countries: the cement industry case," Energy Policy, Elsevier, vol. 34(1), pages 72-87, January.
    4. Ke, Jing & McNeil, Michael & Price, Lynn & Khanna, Nina Zheng & Zhou, Nan, 2013. "Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties," Energy Policy, Elsevier, vol. 57(C), pages 172-181.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    6. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    7. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    8. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
    9. Yeonbae Kim & Ernst Worrell, 2002. "CO 2 Emission Trends in the Cement Industry: An International Comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(2), pages 115-133, June.
    10. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    11. Lee, Myung-Kyoon, 2005. "Reviewing tax system and its reform plan for the fuel market in South Korea," Energy Policy, Elsevier, vol. 33(4), pages 475-482, March.
    12. Mokrzycki, Eugeniusz & Uliasz-Bochenczyk, Alicja & Sarna, Mieczyslaw, 2003. "Use of alternative fuels in the Polish cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 101-111, January.
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    14. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    15. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    16. Mokrzycki, Eugeniusz & Uliasz- Bochenczyk, Alicja, 2003. "Alternative fuels for the cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 95-100, January.
    17. Liu, Feng & Ross, Marc & Wang, Shumao, 1995. "Energy efficiency of China's cement industry," Energy, Elsevier, vol. 20(7), pages 669-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.
    2. Acharya, Bikram & Marhold, Klaus, 2019. "Determinants of household energy use and fuel switching behavior in Nepal," Energy, Elsevier, vol. 169(C), pages 1132-1138.
    3. Acharya, Bikram & Adhikari, Santosh, 2021. "Household energy consumption and adaptation behavior during crisis: Evidence from Indian economic blockade on Nepal," Energy Policy, Elsevier, vol. 148(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    2. Woo, JongRoul & Choi, Jae Young & Shin, Jungwoo & Lee, Jongsu, 2014. "The effect of new media on consumer media usage: An empirical study in South Korea," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 3-11.
    3. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    4. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    5. Jung-Kyu Jung & Jae Young Choi, 2022. "Choice and allocation characteristics of faculty time in Korea: effects of tenure, research performance, and external shock," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2847-2869, May.
    6. Aranda Usón, Alfonso & López-Sabirón, Ana M. & Ferreira, Germán & Llera Sastresa, Eva, 2013. "Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 242-260.
    7. Jungwoo Shin & Taehoon Lim & Moo Yeon Kim & Jae Young Choi, 2018. "Can Next-Generation Vehicles Sustainably Survive in the Automobile Market? Evidence from Ex-Ante Market Simulation and Segmentation," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    8. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    9. Koo, Yoonmo & Kim, Chang Seob & Hong, Junhee & Choi, Ie-Jung & Lee, Jongsu, 2012. "Consumer preferences for automobile energy-efficiency grades," Energy Economics, Elsevier, vol. 34(2), pages 446-451.
    10. Mikulčić, Hrvoje & Vujanović, Milan & Fidaros, Dimitris K. & Priesching, Peter & Minić, Ivica & Tatschl, Reinhard & Duić, Neven & Stefanović, Gordana, 2012. "The application of CFD modelling to support the reduction of CO2 emissions in cement industry," Energy, Elsevier, vol. 45(1), pages 464-473.
    11. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    12. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    13. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    14. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    15. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    16. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    17. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    18. Tsiliyannis, C.A., 2016. "Cement manufacturing using alternative fuels: Enhanced productivity and environmental compliance via oxygen enrichment," Energy, Elsevier, vol. 113(C), pages 1202-1218.
    19. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    20. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:4091-4099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.