IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122004373.html
   My bibliography  Save this article

A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality

Author

Listed:
  • Chen, Siyuan
  • Liu, Jiangfeng
  • Zhang, Qi
  • Teng, Fei
  • McLellan, Benjamin C.

Abstract

With the proposal to achieve carbon neutrality by the mid-21st century, carbon capture, utilization, and storage (CCUS) as a critical negative carbon technology is receiving extensive attention and concerns around the world. Under this context, the development of CCUS and relevant literature both have been experiencing an upsurge. However, the actual scale of CCUS is still far behind our expectations, especially, the various risks and uncertainties associated with its deployment planning have not yet been addressed clearly. Therefore, this paper provides an overview of model-based CCUS deployment pathways toward carbon neutrality, as well as the associated risks of financial, technical, environmental, health and safety (EHS) aspects. On this basis, we scrutinize the potential challenges that could lead to the pace of CCUS deployment inconsistent with the need to achieve a carbon-neutral target. The results suggest that the “Golden Age” of CCUS deployment lies from 2040 to 2060 in the world, while 2030–2050 for China. Furthermore, we found that inadequate exploration in geologic storage capacity also creates a critical conundrum for CCUS deployment and optimization, apart from typical challenges including high failure rate of projects, the lack of financial support and market stimulus, as well as incomplete regulation framework and risk-sharing mechanism. Lastly, this paper points out the further potential research direction, followed by policy implications and recommendations.

Suggested Citation

  • Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122004373
    DOI: 10.1016/j.rser.2022.112537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    3. Xiaofan Xing & Rong Wang & Nico Bauer & Philippe Ciais & Junji Cao & Jianmin Chen & Xu Tang & Lin Wang & Xin Yang & Olivier Boucher & Daniel Goll & Josep Peñuelas & Ivan A. Janssens & Yves Balkanski &, 2021. "Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    5. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Pan, Xunzhang & Elzen, Michel den & Höhne, Niklas & Teng, Fei & Wang, Lining, 2017. "Exploring fair and ambitious mitigation contributions under the Paris Agreement goals," Environmental Science & Policy, Elsevier, vol. 74(C), pages 49-56.
    7. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    8. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
    9. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    10. Sweerts, Bart & Longa, Francesco Dalla & van der Zwaan, Bob, 2019. "Financial de-risking to unlock Africa's renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 75-82.
    11. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    12. Rob Bellamy & Javier Lezaun & James Palmer, 2019. "Perceptions of bioenergy with carbon capture and storage in different policy scenarios," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    13. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    14. Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
    15. Biagi, James & Agarwal, Ramesh & Zhang, Zheming, 2016. "Simulation and optimization of enhanced gas recovery utilizing CO2," Energy, Elsevier, vol. 94(C), pages 78-86.
    16. Amin Ettehad, 2014. "Storage compliance in coupled CO 2 ‐EOR and storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(1), pages 66-80, February.
    17. Yao, Xing & Fan, Ying & Xu, Yuan & Zhang, Xian & Zhu, Lei & Feng, Lianyong, 2019. "Is it worth to invest? -An evaluation of CTL-CCS project in China based on real options," Energy, Elsevier, vol. 182(C), pages 920-931.
    18. Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
    19. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Florian Egli & Bjarne Steffen & Tobias S. Schmidt, 2018. "A dynamic analysis of financing conditions for renewable energy technologies," Nature Energy, Nature, vol. 3(12), pages 1084-1092, December.
    21. Ryan Hanna & Ahmed Abdulla & Yangyang Xu & David G. Victor, 2021. "Emergency deployment of direct air capture as a response to the climate crisis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    22. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    23. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
    24. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    25. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    26. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    27. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "An analysis of China's climate policy using the China-in-Global Energy Model," Economic Modelling, Elsevier, vol. 52(PB), pages 650-660.
    28. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    29. Zhang, Shuai & Zhuang, Yu & Liu, Linlin & Zhang, Lei & Du, Jian, 2019. "Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    30. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    31. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    32. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    33. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    34. Yang, Yang & Zhang, Qiao & Yu, Haoshui & Feng, Xiao, 2021. "Tech-economic and environmental analysis of energy-efficient shale gas and flue gas coupling system for chemicals manufacture and carbon capture storage and utilization," Energy, Elsevier, vol. 217(C).
    35. Hongying Lv & Luochun Wang & Guizhen Liu & Ziyang Lou & Lingyun Pang & Bofeng Cai & Qi Li, 2021. "Risk assessment on the CCUS project using risk breakdown structure methodology: A case study on Jilin oilfield CO2‐EOR Hei‐79 block," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 750-763, August.
    36. Yang, Lin & Xu, Mao & Yang, Yuantao & Fan, Jingli & Zhang, Xian, 2019. "Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China," Applied Energy, Elsevier, vol. 255(C).
    37. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
    38. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    39. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    40. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    41. Xiaochen Wei & Qi Li & Xiaying Li & Yankun Sun, 2016. "Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: insights from uncertainty analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 1-21, March.
    42. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    43. Ling Tang & Jiabao Qu & Zhifu Mi & Xin Bo & Xiangyu Chang & Laura Diaz Anadon & Shouyang Wang & Xiaoda Xue & Shibei Li & Xin Wang & Xiaohong Zhao, 2019. "Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards," Nature Energy, Nature, vol. 4(11), pages 929-938, November.
    44. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    45. Tobias S. Schmidt, 2014. "Low-carbon investment risks and de-risking," Nature Climate Change, Nature, vol. 4(4), pages 237-239, April.
    46. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    47. Turner, Karen & Race, Julia & Alabi, Oluwafisayo & Katris, Antonios & Swales, J. Kim, 2021. "Policy options for funding carbon capture in regional industrial clusters: What are the impacts and trade-offs involved in compensating industry competitiveness loss?," Ecological Economics, Elsevier, vol. 184(C).
    48. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Liang, Xi & Sun, Yan & Angus, Daniel, 2020. "China's carbon capture, utilization and storage (CCUS) policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    49. Joe Lane & Chris Greig & Andrew Garnett, 2021. "Uncertain storage prospects create a conundrum for carbon capture and storage ambitions," Nature Climate Change, Nature, vol. 11(11), pages 925-936, November.
    50. Zhang, Xiaodong & Duncan, Ian J. & Huang, Gordon & Li, Gongchen, 2014. "Identification of management strategies for CO2 capture and sequestration under uncertainty through inexact modeling," Applied Energy, Elsevier, vol. 113(C), pages 310-317.
    51. Vo Thanh, Hung & Yasin, Qamar & Al-Mudhafar, Watheq J. & Lee, Kang-Kun, 2022. "Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers," Applied Energy, Elsevier, vol. 314(C).
    52. Bradshaw, J & Allinson, G & Bradshaw, B.E & Nguyen, V & Rigg, A.J & Spencer, L & Wilson, P, 2004. "Australia’s CO2 geological storage potential and matching of emission sources to potential sinks," Energy, Elsevier, vol. 29(9), pages 1623-1631.
    53. Nair, Purusothmn Nair S. Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2021. "A generic algebraic targeting approach for integration of renewable energy sources, CO2 capture and storage and negative emission technologies in carbon-constrained energy planning," Energy, Elsevier, vol. 235(C).
    54. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    55. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    56. Zhang, Xin & Liao, Qi & Wang, Qiang & Wang, Limin & Qiu, Rui & Liang, Yongtu & Zhang, Haoran, 2021. "How to promote zero-carbon oilfield target? A technical-economic model to analyze the economic and environmental benefits of Recycle-CCS-EOR project," Energy, Elsevier, vol. 225(C).
    57. Singh, Udayan & Colosi, Lisa M., 2021. "The case for estimating carbon return on investment (CROI) for CCUS platforms," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid M. Pouran & Seyed M. Karimi & Mariana Padilha Campos Lopes & Yong Sheng, 2022. "What China’s Environmental Policy Means for PV Solar, Electric Vehicles, and Carbon Capture and Storage Technologies," Energies, MDPI, vol. 15(23), pages 1-13, November.
    2. Wang, Shanyong & Wang, Jing & Wang, Wenfu, 2023. "Do geopolitical risks facilitate the global energy transition? Evidence from 39 countries in the world," Resources Policy, Elsevier, vol. 85(PB).
    3. Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
    4. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    5. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    6. Wang, Yanwei & Dai, Zhenxue & Chen, Li & Shen, Xudong & Chen, Fangxuan & Soltanian, Mohamad Reza, 2023. "An integrated multi-scale model for CO2 transport and storage in shale reservoirs," Applied Energy, Elsevier, vol. 331(C).
    7. Christiano B. Peres & Pedro M. R. Resende & Leonel J. R. Nunes & Leandro C. de Morais, 2022. "Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO 2 Mitigation Potential Analysis," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
    8. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    9. Valentina Bortuzzo & Serena Bertagna & Vittorio Bucci, 2023. "Mitigation of CO 2 Emissions from Commercial Ships: Evaluation of the Technology Readiness Level of Carbon Capture Systems," Energies, MDPI, vol. 16(9), pages 1-15, April.
    10. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    11. Wang, Zhoujie & Zhu, Jianzhong & Li, Songyan, 2023. "Novel strategy for reducing the minimum miscible pressure in a CO2–oil system using nonionic surfactant: Insights from molecular dynamics simulations," Applied Energy, Elsevier, vol. 352(C).
    12. Zaoxian Wang & Dechun Huang, 2023. "A New Perspective on Financial Risk Prediction in a Carbon-Neutral Environment: A Comprehensive Comparative Study Based on the SSA-LSTM Model," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    13. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    14. Charli Sitinjak & Sitinjak Ebennezer & Józef Ober, 2023. "Exploring Public Attitudes and Acceptance of CCUS Technologies in JABODETABEK: A Cross-Sectional Study," Energies, MDPI, vol. 16(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    2. Hanne Lamberts-Van Assche & Tine Compernolle, 2022. "Using Real Options Thinking to Value Investment Flexibility in Carbon Capture and Utilization Projects: A Review," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    3. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).
    4. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    5. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    6. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    7. Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
    8. Lei Zhu & Xing Yao & Xian Zhang, 2020. "Evaluation of cooperative mitigation: captured carbon dioxide for enhanced oil recovery," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1261-1285, October.
    9. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    10. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    11. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    13. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    14. Song, Xiaohua & Ge, Zeqi & Zhang, Wen & Wang, Zidong & Huang, Yamin & Liu, Hong, 2023. "Study on multi-subject behavior game of CCUS cooperative alliance," Energy, Elsevier, vol. 262(PB).
    15. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    16. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    17. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    18. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
    19. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    20. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122004373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.