IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i3d10.1038_s41558-020-00977-5.html
   My bibliography  Save this article

Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement

Author

Listed:
  • Yuli Shan

    (Energy and Sustainability Research Institute Groningen, University of Groningen)

  • Jiamin Ou

    (Utrecht University
    University of East Anglia)

  • Daoping Wang

    (Shanghai University of Finance and Economics)

  • Zhao Zeng

    (Tianjin University)

  • Shaohui Zhang

    (Beihang University
    International Institute for Applied Systems Analysis)

  • Dabo Guan

    (Tsinghua University
    University College London)

  • Klaus Hubacek

    (Energy and Sustainability Research Institute Groningen, University of Groningen
    International Institute for Applied Systems Analysis)

Abstract

The global economy is facing a serious recession due to COVID-19, with implications for CO2 emissions. Here, using a global adaptive multiregional input–output model and scenarios of lockdown and fiscal counter measures, we show that global emissions from economic sectors will decrease by 3.9 to 5.6% in 5 years (2020 to 2024) compared with a no-pandemic baseline scenario (business as usual for economic growth and carbon intensity decline). Global economic interdependency via supply chains means that blocking one country’s economic activities causes the emissions of other countries to decrease even without lockdown policies. Supply-chain effects contributed 90.1% of emissions decline from power production in 2020 but only 13.6% of transport sector reductions. Simulations of follow-up fiscal stimuli in 41 major countries increase global 5-yr emissions by −6.6 to 23.2 Gt (−4.7 to 16.4%), depending on the strength and structure of incentives. Therefore, smart policy is needed to turn pandemic-related emission declines into firm climate action.

Suggested Citation

  • Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00977-5
    DOI: 10.1038/s41558-020-00977-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-00977-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-00977-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J-F Mercure & H. Pollitt & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & A. Lam & F. Knobloch & J. Vinuales, 2017. "Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE," Papers 1707.04870, arXiv.org, revised Jan 2018.
    2. Carl-Johan H. Södersten & Manfred Lenzen, 2020. "A supply-use approach to capital endogenization in input–output analysis," Economic Systems Research, Taylor & Francis Journals, vol. 32(4), pages 451-475, October.
    3. Antoine Mandel & Vipin Veetil, 2020. "The Economic Cost of COVID Lockdowns: An Out-of-Equilibrium Analysis," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 431-451, October.
    4. Anton Pichler & Marco Pangallo & R. Maria del Rio-Chanona & Franc{c}ois Lafond & J. Doyne Farmer, 2020. "Production networks and epidemic spreading: How to restart the UK economy?," Papers 2005.10585, arXiv.org.
    5. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    6. Hiroyasu Inoue & Yasuyuki Todo, 2020. "The propagation of the economic impact through supply chains: The case of a mega-city lockdown against the spread of COVID-19," Papers 2003.14002, arXiv.org.
    7. Hiroyasu Inoue & Yasuyuki Todo, 2020. "The propagation of economic impacts through supply chains: The case of a mega-city lockdown to prevent the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-10, September.
    8. Hiroyasu Inoue & Yasuyuki Todo, 2019. "Firm-level propagation of shocks through supply-chain networks," Nature Sustainability, Nature, vol. 2(9), pages 841-847, September.
    9. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pichler, Anton & Pangallo, Marco & del Rio-Chanona, R. Maria & Lafond, François & Farmer, J. Doyne, 2022. "Forecasting the propagation of pandemic shocks with a dynamic input-output model," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    2. Pichler, Anton & Pangallo, Marco & del Rio-Chanona, R. Maria & Lafond, François & Farmer, J. Doyne, 2020. "In and out of lockdown: Propagation of supply and demand shocks in a dynamic input-output model," INET Oxford Working Papers 2021-18, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Feb 2021.
    3. Daoping Wang & Ottar N. Bjørnstad & Tianyang Lei & Yida Sun & Jingwen Huo & Qi Hao & Zhao Zeng & Shupeng Zhu & Stéphane Hallegatte & Ruiyun Li & Dabo Guan & Nils C. Stenseth, 2023. "Supply chains create global benefits from improved vaccine accessibility," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Qianxue Zhang, 2022. "The Hubei lockdown and its global impacts via supply chains," Review of International Economics, Wiley Blackwell, vol. 30(4), pages 1087-1109, September.
    5. Souknilanh Keola & Kazunobu Hayakawa, 2021. "Do Lockdown Policies Reduce Economic and Social Activities? Evidence from NO2 Emissions," The Developing Economies, Institute of Developing Economies, vol. 59(2), pages 178-205, June.
    6. Anton Pichler & J. Doyne Farmer, 2022. "Simultaneous supply and demand constraints in input–output networks: the case of Covid-19 in Germany, Italy, and Spain," Economic Systems Research, Taylor & Francis Journals, vol. 34(3), pages 273-293, July.
    7. Kazunobu Hayakawa & Hiroshi Mukunoki, 2021. "Impacts of COVID‐19 on Global Value Chains," The Developing Economies, Institute of Developing Economies, vol. 59(2), pages 154-177, June.
    8. Dabo Guan & Daoping Wang & Stephane Hallegatte & Steven J. Davis & Jingwen Huo & Shuping Li & Yangchun Bai & Tianyang Lei & Qianyu Xue & D’Maris Coffman & Danyang Cheng & Peipei Chen & Xi Liang & Bing, 2020. "Global supply-chain effects of COVID-19 control measures," Nature Human Behaviour, Nature, vol. 4(6), pages 577-587, June.
    9. Endoh, Masahiro, 2022. "The impact of firms’ international trade on domestic suppliers: The case of Japan," Journal of the Japanese and International Economies, Elsevier, vol. 63(C).
    10. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Keiichi Morimoto & Shiba Suzuki, 2022. "Ambiguity in a pandemic recession, asset prices, and lockdown policy," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 1039-1070, October.
    12. Nano Prawoto & Eko Priyo Purnomo & Abitassha Az Zahra, 2020. "The Impacts of Covid-19 Pandemic on Socio-Economic Mobility in Indonesia," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(3), pages 57-71.
    13. Prol, Javier López & O, Sungmin, 2020. "Impact of COVID-19 Measures on Short-Term Electricity Consumption in the Most Affected EU Countries and USA States," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 23(10).
    14. INOUE Hiroyasu & MURASE Yohsuke & TODO Yasuyuki, 2022. "Lockdowns Require Geographic Coordination because of the Propagation of Economic Effects through Supply Chains," Discussion papers 22076, Research Institute of Economy, Trade and Industry (RIETI).
    15. Antoine Mandel & Vipin Veetil, 2020. "The Economic Cost of COVID Lockdowns: An Out-of-Equilibrium Analysis," Economics of Disasters and Climate Change, Springer, vol. 4(3), pages 431-451, October.
    16. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    17. Kahn, Charles M. & Wagner, Wolf, 2021. "Liquidity provision during a pandemic," Journal of Banking & Finance, Elsevier, vol. 133(C).
    18. Mellacher, Patrick, 2020. "COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model," MPRA Paper 103661, University Library of Munich, Germany.
    19. FUJIWARA Yoshi & INOUE Hiroyasu & YAMAGUCHI Takayuki & AOYAMA Hideaki & TANAKA Takuma & KIKUCHI Kentaro, 2021. "Money Flow Network Among Firms' Accounts in a Regional Bank of Japan," Discussion papers 21005, Research Institute of Economy, Trade and Industry (RIETI).
    20. Trinh Q. Long, 2021. "Individual Subjective Well-Being during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(14), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00977-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.