IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp1051-1062.html
   My bibliography  Save this article

Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China

Author

Listed:
  • Li, Zhiwei
  • Jia, Xiaoping
  • Foo, Dominic C.Y.
  • Tan, Raymond R.

Abstract

Renewable energy has a more important role to play in China’s power sector, especially at the regional level. Renewable electricity in China has made great progress on the basis of national policies. However, the promotion of renewable electricity sector at the regional level is still hampered by local issues. China needs to solve some challenging barriers related to implementation of polices for the development of renewable electricity. These barriers stem largely from availability and reliability constraints. Systematic planning techniques are needed to fully utilize abundant renewable energy resources. In this work, an improved graphical pinch analysis-based approach is presented, which considers carbon-constrained regional electricity planning and supply chain synthesis of biomass energy at the regional level in rural China. The minimum renewable energy target is identified by Carbon Emissions Pinch Analysis (CEPA). Next, a demand-driven approach is applied to synthesize the biomass supply chain network to meet the established target in a given region. A detailed case study of Laixi County in China is used to demonstrate the applicability of the proposed approach for policy-making to promote utilization of renewable electricity at the regional level.

Suggested Citation

  • Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1051-1062
    DOI: 10.1016/j.apenergy.2016.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916306250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    2. Yuan, Jiahai & Hou, Yong & Xu, Ming, 2012. "China's 2020 carbon intensity target: Consistency, implementations, and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4970-4981.
    3. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    4. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J., 2015. "Achieving 33% renewable electricity generation by 2020 in California," Energy, Elsevier, vol. 92(P3), pages 260-269.
    5. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    6. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R., 2014. "Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050," Applied Energy, Elsevier, vol. 135(C), pages 656-665.
    7. Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
    8. Tan, Raymond R. & Foo, Dominic Chwan Yee & Aviso, Kathleen B. & Ng, Denny Kok Sum, 2009. "The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production," Applied Energy, Elsevier, vol. 86(5), pages 605-609, May.
    9. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2013. "Rural public acceptance of renewable energy deployment: The case of Shandong in China," Applied Energy, Elsevier, vol. 102(C), pages 1187-1196.
    10. Foo, Dominic C.Y. & Tan, Raymond R. & Ng, Denny K.S., 2008. "Carbon and footprint-constrained energy planning using cascade analysis technique," Energy, Elsevier, vol. 33(10), pages 1480-1488.
    11. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    12. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    13. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    14. Foo, Dominic C.Y. & Tan, Raymond R. & Lam, Hon Loong & Abdul Aziz, Mustafa Kamal & Klemeš, Jiří Jaromír, 2013. "Robust models for the synthesis of flexible palm oil-based regional bioenergy supply chain," Energy, Elsevier, vol. 55(C), pages 68-73.
    15. Crilly, Damien & Zhelev, Toshko, 2008. "Emissions targeting and planning: An application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector," Energy, Elsevier, vol. 33(10), pages 1498-1507.
    16. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    17. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.
    18. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    19. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    20. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
    21. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R. & Chand, Alvin, 2015. "Carbon Emissions Pinch Analysis for emissions reductions in the New Zealand transport sector through to 2050," Energy, Elsevier, vol. 92(P3), pages 569-576.
    22. Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Abdul-Manan, Zainuddin & Klemeš, Jiří Jaromír, 2012. "A process integration targeting method for hybrid power systems," Energy, Elsevier, vol. 44(1), pages 6-10.
    23. Chen, Qixin & Kang, Chongqing & Xia, Qing & Guan, Dabo, 2011. "Preliminary exploration on low-carbon technology roadmap of China’s power sector," Energy, Elsevier, vol. 36(3), pages 1500-1512.
    24. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd Yahya, Nur Syahira & Ng, Lik Yin & Andiappan, Viknesh, 2021. "Optimisation and planning of biomass supply chain for new and existing power plants based on carbon reduction targets," Energy, Elsevier, vol. 237(C).
    2. Lopez, Neil Stephen A. & Foo, Dominic C.Y. & Tan, Raymond R., 2021. "Optimizing regional electricity trading with Carbon Emissions Pinch Analysis," Energy, Elsevier, vol. 237(C).
    3. Yang Zhang & Hekun Wang & Taomeizi Zhou & Zhiwei Li & Xiaoping Jia, 2022. "Extended Carbon Emission Pinch Analysis for the Low-Carbon Tobacco Industry," Energies, MDPI, vol. 15(13), pages 1-14, June.
    4. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    6. de Lira Quaresma, Ana Carolina & Francisco, Flávio S. & Pessoa, Fernando L.P. & Queiroz, Eduardo M., 2018. "Carbon emission reduction in the Brazilian electricity sector using Carbon Sources Diagram," Energy, Elsevier, vol. 159(C), pages 134-150.
    7. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    8. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    3. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    4. Lopez, Neil Stephen A. & Foo, Dominic C.Y. & Tan, Raymond R., 2021. "Optimizing regional electricity trading with Carbon Emissions Pinch Analysis," Energy, Elsevier, vol. 237(C).
    5. Rok Gomilšek & Lidija Čuček & Marko Homšak & Raymond R. Tan & Zdravko Kravanja, 2020. "Carbon Emissions Constrained Energy Planning for Aluminum Products," Energies, MDPI, vol. 13(11), pages 1-18, June.
    6. de Lira Quaresma, Ana Carolina & Francisco, Flávio S. & Pessoa, Fernando L.P. & Queiroz, Eduardo M., 2018. "Carbon emission reduction in the Brazilian electricity sector using Carbon Sources Diagram," Energy, Elsevier, vol. 159(C), pages 134-150.
    7. Nair, Purusothmn Nair S. Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2021. "A generic algebraic targeting approach for integration of renewable energy sources, CO2 capture and storage and negative emission technologies in carbon-constrained energy planning," Energy, Elsevier, vol. 235(C).
    8. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Liu, Wen Hui & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda & Lim, Jeng Shiun & Mohammad Rozali, Nor Erniza & Ho, Wai Shin, 2016. "Sizing of Hybrid Power System with varying current type using numerical probabilistic approach," Applied Energy, Elsevier, vol. 184(C), pages 1364-1373.
    11. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    12. Norbu, Sonam & Bandyopadhyay, Santanu, 2017. "Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties," Energy, Elsevier, vol. 135(C), pages 466-475.
    13. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
    14. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
    15. Krishna Priya, G.S. & Bandyopadhyay, Santanu, 2017. "Multi-objective pinch analysis for power system planning," Applied Energy, Elsevier, vol. 202(C), pages 335-347.
    16. Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
    17. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
    18. Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2014. "Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems," Applied Energy, Elsevier, vol. 113(C), pages 477-487.
    19. Liang, Sai & Zhang, Tianzhu, 2011. "Managing urban energy system: A case of Suzhou in China," Energy Policy, Elsevier, vol. 39(5), pages 2910-2918, May.
    20. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1051-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.