IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp1364-1373.html
   My bibliography  Save this article

Sizing of Hybrid Power System with varying current type using numerical probabilistic approach

Author

Listed:
  • Liu, Wen Hui
  • Wan Alwi, Sharifah Rafidah
  • Hashim, Haslenda
  • Lim, Jeng Shiun
  • Mohammad Rozali, Nor Erniza
  • Ho, Wai Shin

Abstract

Power Pinch Analysis is an established method to target the design parameter of a Hybrid Power System. This study aims to develop an extended tool known as Probability-Power Pinch Analysis (P-PoPA) using probability theory to simplify the process of Power Pinch Analysis in considering efficiency losses. The method targets for a Hybrid Power System with various current type from generation to demand, generation to storage, or storage to demand. The procedure of the method is illustrated using an electricity-deficit scenario where both AC–DC generation and AC–DC demand are present. The new methodology which adapts the same concept as the Stand-Alone Hybrid System Power Pinch Analysis utilizes data extracted from an ideal (considering no efficiency losses) graphical Power Pinch Analysis and Power Cascade Table and multiplying the extracted data with a probability factor to obtain an estimated target (considering efficiency losses) for the power system. In this study, three design parameters are determined for a system with 208kWh AC source and 50kWh DC source and 170kWh AC demand and 98kWh DC demand. The external energy that is needed for the system is identified as 38.93kWh and the energy capacity of energy storage is 42.20kWh and power capacity of energy storage is 8.79kW. The result is then compared with the existing cascade analysis, Power Cascade Table and Storage Cascade Table. The determined sizing values have a close estimation to that from cascading analysis (considering efficiency losses), with a maximum percentage difference of 2.3%.

Suggested Citation

  • Liu, Wen Hui & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda & Lim, Jeng Shiun & Mohammad Rozali, Nor Erniza & Ho, Wai Shin, 2016. "Sizing of Hybrid Power System with varying current type using numerical probabilistic approach," Applied Energy, Elsevier, vol. 184(C), pages 1364-1373.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1364-1373
    DOI: 10.1016/j.apenergy.2016.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    2. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    3. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.
    4. Ho, Wai Shin & Macchietto, Sandro & Lim, Jeng Shiun & Hashim, Haslenda & Muis, Zarina Ab. & Liu, Wen Hui, 2016. "Optimal scheduling of energy storage for renewable energy distributed energy generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1100-1107.
    5. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    6. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
    7. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    8. Ho, W.S. & Hashim, H. & Hassim, M.H. & Muis, Z.A. & Shamsuddin, N.L.M., 2012. "Design of distributed energy system through Electric System Cascade Analysis (ESCA)," Applied Energy, Elsevier, vol. 99(C), pages 309-315.
    9. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    10. Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Lee, Chew Tin & Sam, Kah Chiin & Tan, Sie Ting, 2017. "Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management," Applied Energy, Elsevier, vol. 185(P2), pages 1481-1489.
    11. Tan, Raymond R. & Foo, Dominic Chwan Yee & Aviso, Kathleen B. & Ng, Denny Kok Sum, 2009. "The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production," Applied Energy, Elsevier, vol. 86(5), pages 605-609, May.
    12. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    13. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    14. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    15. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    16. Chakraborty, Sudipta & Kramer, Bill & Kroposki, Benjamin, 2009. "A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2323-2335, December.
    17. Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Abdul-Manan, Zainuddin & Klemeš, Jiří Jaromír, 2012. "A process integration targeting method for hybrid power systems," Energy, Elsevier, vol. 44(1), pages 6-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    3. Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).
    4. Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír & Cheong, Jing Shenn, 2019. "Probability-Power Pinch Analysis targeting approach for diesel/biodiesel plant integration into hybrid power systems," Energy, Elsevier, vol. 187(C).
    5. Norbu, Sonam & Bandyopadhyay, Santanu, 2017. "Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties," Energy, Elsevier, vol. 135(C), pages 466-475.
    6. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff," Energy, Elsevier, vol. 116(P2), pages 1260-1268.
    7. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    8. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    9. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
    10. Bizon, Nicu, 2018. "Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load," Applied Energy, Elsevier, vol. 212(C), pages 196-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
    3. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    4. Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
    5. Norbu, Sonam & Bandyopadhyay, Santanu, 2017. "Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties," Energy, Elsevier, vol. 135(C), pages 466-475.
    6. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    7. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    8. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
    9. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    11. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    12. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.
    13. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff," Energy, Elsevier, vol. 116(P2), pages 1260-1268.
    14. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    15. Tuan-Viet Hoang & Pouya Ifaei & Kijeon Nam & Jouan Rashidi & Soonho Hwangbo & Jong-Min Oh & ChangKyoo Yoo, 2018. "Optimal Management of a Hybrid Renewable Energy System Coupled with a Membrane Bioreactor Using Enviro-Economic and Power Pinch Analyses for Sustainable Climate Change Adaption," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    16. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations," Energy, Elsevier, vol. 75(C), pages 24-30.
    17. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    18. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    19. Giaouris, Damian & Papadopoulos, Athanasios I. & Seferlis, Panos & Voutetakis, Spyros & Papadopoulou, Simira, 2016. "Power grand composite curves shaping for adaptive energy management of hybrid microgrids," Renewable Energy, Elsevier, vol. 95(C), pages 433-448.
    20. Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1364-1373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.