IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i10p1480-1488.html
   My bibliography  Save this article

Carbon and footprint-constrained energy planning using cascade analysis technique

Author

Listed:
  • Foo, Dominic C.Y.
  • Tan, Raymond R.
  • Ng, Denny K.S.

Abstract

This work presents algebraic targeting techniques for energy sector planning with carbon (CO2) emission and land availability constraints. In general, it is desirable to maximize the use of low- or zero-carbon energy sources to reduce CO2 emission. However, such technologies are either more expensive (as with renewable energy) or more controversial (as in the case of nuclear energy or carbon capture and storage) than conventional fossil fuels. Thus, in many energy planning scenarios, there is some interest in identifying the minimum amount of low- or zero-carbon energy sources needed to meet the national or regional energy demand while maintaining the CO2 emission limits. Via the targeting step of pinch analysis, that quantity can be identified. Besides, another related problem involves the energy planning of biofuel systems in view of land availability constraints, which arises when agricultural resources need to be used for both food and energy production. Algebraic targeting approach of cascade analysis technique that was originally developed for resource conservation network is extended to determine targets or benchmarks for both of these problems.

Suggested Citation

  • Foo, Dominic C.Y. & Tan, Raymond R. & Ng, Denny K.S., 2008. "Carbon and footprint-constrained energy planning using cascade analysis technique," Energy, Elsevier, vol. 33(10), pages 1480-1488.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:10:p:1480-1488
    DOI: 10.1016/j.energy.2008.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420800087X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    2. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    3. Zhelev, T.K. & Ridolfi, R., 2006. "Energy recovery and environmental concerns addressed through emergy–pinch analysis," Energy, Elsevier, vol. 31(13), pages 2486-2498.
    4. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    2. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    3. Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
    4. Tan, Raymond R. & Foo, Dominic Chwan Yee & Aviso, Kathleen B. & Ng, Denny Kok Sum, 2009. "The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production," Applied Energy, Elsevier, vol. 86(5), pages 605-609, May.
    5. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    6. Lam, Hon Loong & Varbanov, Petar & Klemeš, Jiří, 2010. "Minimising carbon footprint of regional biomass supply chains," Resources, Conservation & Recycling, Elsevier, vol. 54(5), pages 303-309.
    7. Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Abdul-Manan, Zainuddin & Klemeš, Jiří Jaromír, 2012. "A process integration targeting method for hybrid power systems," Energy, Elsevier, vol. 44(1), pages 6-10.
    8. Keivan Nemati-Amirkolaii & Hedi Romdhana & Marie-Laure Lameloise, 2019. "Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review," Sustainability, MDPI, vol. 11(16), pages 1-26, August.
    9. Walmsley, Timothy Gordon & Ong, Benjamin H.Y. & Klemeš, Jiří Jaromír & Tan, Raymond R. & Varbanov, Petar Sabev, 2019. "Circular Integration of processes, industries, and economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 507-515.
    10. Varbanov, Petar & Klemeš, Jiří, 2008. "Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies," Energy, Elsevier, vol. 33(10), pages 1508-1517.
    11. Du, Yimeng & Takeuchi, Kenji, 2019. "Can climate mitigation help the poor? Measuring impacts of the CDM in rural China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 178-197.
    12. Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
    13. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    14. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    15. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    16. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    17. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    18. András Éles & László Halász & István Heckl & Heriberto Cabezas, 2019. "Evaluation of the Energy Supply Options of a Manufacturing Plant by the Application of the P-Graph Framework," Energies, MDPI, vol. 12(8), pages 1-24, April.
    19. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    20. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:10:p:1480-1488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.