IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121002057.html
   My bibliography  Save this article

Hybrid sorption-vapor compression cooling systems: A comprehensive overview

Author

Listed:
  • Gado, Mohamed G.
  • Ookawara, Shinichi
  • Nada, Sameh
  • El-Sharkawy, Ibrahim I.

Abstract

This paper thoroughly reviews the integration of absorption, adsorption and desiccant cooling technologies into vapor compression cooling/refrigeration systems. Different configurations of hybrid absorption-compression cooling systems have been collectively listed and studied based on energetic, exergetic, economic and environmental analysis. Several reviewed studies revealed that such systems could diminish the electricity consumption by 45–88% in comparison with conventional compression systems. Besides, various arrangements of hybrid adsorption-compression cooling systems have been intensively investigated using cascade, partially integrated and fully integrated systems. These layouts of integrated adsorption-compression cooling systems focus on escalating the performance of vapor compression cooling systems by dwindling their condensation temperatures. Surveys showed that using adsorption cooling systems with oversized capacity could result in increasing the performance until approaching freezing limits, while downscaled adsorption cooling systems could worsen the system performance as a result of increasing the intermediate condensation temperature. The amalgamation of vapor compression systems with both solid and liquid desiccant cooling cycles has also been reported and compared with different regeneration schemes; for instance, electric energy, solar energy and heat rejected from the assisted vapor compression cooling systems. Considerable studies confirmed that using multi-stage solid desiccant cooling systems compared with single-stage solid desiccant cooling systems can be operated at lower regeneration temperatures. Also by introducing integrated liquid desiccant-vapor compression systems, cooling can be attained with a dehumidification process that cools the supply air lesser than its dew point with an energy provision of 30–80%. This work is beneficial for researchers involved in the field of multi-integrated cooling systems.

Suggested Citation

  • Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002057
    DOI: 10.1016/j.rser.2021.110912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li-Zhi & Zhang, Ning, 2014. "A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation," Energy, Elsevier, vol. 65(C), pages 441-451.
    2. Palomba, Valeria & Ferraro, Marco & Frazzica, Andrea & Vasta, Salvatore & Sergi, Francesco & Antonucci, Vincenzo, 2018. "Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications," Applied Energy, Elsevier, vol. 216(C), pages 620-633.
    3. Altun, A.F. & Kilic, M., 2020. "Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey," Renewable Energy, Elsevier, vol. 152(C), pages 75-93.
    4. Labban, Omar & Chen, Tianyi & Ghoniem, Ahmed F. & Lienhard, John H. & Norford, Leslie K., 2017. "Next-generation HVAC: Prospects for and limitations of desiccant and membrane-based dehumidification and cooling," Applied Energy, Elsevier, vol. 200(C), pages 330-346.
    5. Speerforck, Arne & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard & Schmitz, Gerhard, 2017. "Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system," Energy, Elsevier, vol. 141(C), pages 2321-2336.
    6. Kabeel, A.E., 2007. "Solar powered air conditioning system using rotary honeycomb desiccant wheel," Renewable Energy, Elsevier, vol. 32(11), pages 1842-1857.
    7. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    8. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    9. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    10. Mikhaeil, Makram & Gaderer, Matthias & Dawoud, Belal, 2020. "On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study," Energy, Elsevier, vol. 207(C).
    11. Bergero, Stefano & Chiari, Anna, 2011. "On the performances of a hybrid air-conditioning system in different climatic conditions," Energy, Elsevier, vol. 36(8), pages 5261-5273.
    12. Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
    13. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    14. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    15. Lu, Z.S. & Wang, R.Z., 2014. "Study of the new composite adsorbent of salt LiCl/silica gel–methanol used in an innovative adsorption cooling machine driven by low temperature heat source," Renewable Energy, Elsevier, vol. 63(C), pages 445-451.
    16. Daou, K. & Wang, R.Z. & Xia, Z.Z., 2006. "Desiccant cooling air conditioning: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 55-77, April.
    17. Yadav, Y.K., 1995. "Vapour-compression and liquid-desiccant hybrid solar space-conditioning system for energy conservation," Renewable Energy, Elsevier, vol. 6(7), pages 719-723.
    18. Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.
    19. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    20. Shu, Haiwen & Bie, Xu & Zhang, Hongliang & Xu, Xiaoyue & Du, Yu & Ma, Yi & Duanmu, Lin & Cao, Guangyu, 2020. "Natural heat transfer air-conditioning terminal device and its system configuration for ultra-low energy buildings," Renewable Energy, Elsevier, vol. 154(C), pages 1113-1121.
    21. El-Sharkawy, Ibrahim I. & AbdelMeguid, Hossam & Saha, Bidyut Baran, 2014. "Potential application of solar powered adsorption cooling systems in the Middle East," Applied Energy, Elsevier, vol. 126(C), pages 235-245.
    22. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    23. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    24. Mitra, Sourav & Thu, Kyaw & Saha, Bidyut Baran & Dutta, Pradip, 2017. "Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system," Applied Energy, Elsevier, vol. 206(C), pages 507-518.
    25. Han, Wei & Sun, Liuli & Zheng, Danxing & Jin, Hongguang & Ma, Sijun & Jing, Xuye, 2013. "New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat," Applied Energy, Elsevier, vol. 106(C), pages 383-390.
    26. Yinglin, Li & Xiaosong, Zhang & Laizai, Tan & Zhongbin, Zhang & Wei, Wu & Xueying, Xia, 2016. "Performance analysis of a novel liquid desiccant-vapor compression hybrid air-conditioning system," Energy, Elsevier, vol. 109(C), pages 180-189.
    27. Saha, Bidyut Baran & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Koyama, Shigeru & Henninger, Stefan K. & Herbst, Annika & Janiak, Christoph, 2015. "Ethanol adsorption onto metal organic framework: Theory and experiments," Energy, Elsevier, vol. 79(C), pages 363-370.
    28. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    29. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
    30. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    31. Palomba, Valeria & Wittstadt, Ursula & Bonanno, Antonino & Tanne, Mirko & Harborth, Niels & Vasta, Salvatore, 2019. "Components and design guidelines for solar cooling systems: The experience of ZEOSOL," Renewable Energy, Elsevier, vol. 141(C), pages 678-692.
    32. Chen, Liu & Tan, Yikun, 2020. "The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source," Renewable Energy, Elsevier, vol. 146(C), pages 2142-2157.
    33. Sun, Z.G., 2008. "Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller," Energy, Elsevier, vol. 33(3), pages 431-436.
    34. Valeria Palomba & Efstratios Varvagiannis & Sotirios Karellas & Andrea Frazzica, 2019. "Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models," Energies, MDPI, vol. 12(6), pages 1-28, March.
    35. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
    36. Chen, Yi & Han, Wei & Jin, Hongguang, 2015. "An absorption–compression refrigeration system driven by a mid-temperature heat source for low-temperature applications," Energy, Elsevier, vol. 91(C), pages 215-225.
    37. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    38. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    39. Mahmoud Badawy Elsheniti & Osama Elsamni & Raya K. Al-dadah & Sa'ad Mahmoud & Eman Elsayed & Khaled Saleh, 2018. "Adsorption Refrigeration Technologies," Chapters, in: Chaouki Ghenai & Tareq Salameh (ed.), Sustainable Air Conditioning Systems, IntechOpen.
    40. Wang, Yunfeng & Li, Ming & Ji, Xu & Yu, Qiongfen & Li, Guoliang & Ma, Xun, 2018. "Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system," Applied Energy, Elsevier, vol. 224(C), pages 417-425.
    41. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    42. Wang, Yingying & Fan, Ying & Wang, Dengjia & Liu, Yanfeng & Qiu, Zhenghao & Liu, Jiaping, 2020. "Optimization of the areas of solar collectors and photovoltaic panels in liquid desiccant air-conditioning systems using solar energy in isolated low-latitude islands," Energy, Elsevier, vol. 198(C).
    43. Askalany, Ahmed A. & Saha, Bidyut B. & Kariya, Keishi & Ismail, Ibrahim M. & Salem, Mahmoud & Ali, Ahmed H.H. & Morsy, Mahmoud G., 2012. "Hybrid adsorption cooling systems–An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5787-5801.
    44. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    45. Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
    46. Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, S.S., 2015. "Thermodynamic modelling and parametric study of a low temperature vapour compression-absorption system based on modified Gouy-Stodola equation," Energy, Elsevier, vol. 79(C), pages 407-418.
    47. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.
    48. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    49. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    50. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Performance prediction of solid desiccant – Vapor compression hybrid air-conditioning system using artificial neural network," Energy, Elsevier, vol. 103(C), pages 618-629.
    51. Dino, Giuseppe E. & Palomba, Valeria & Nowak, Eliza & Frazzica, Andrea, 2021. "Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application," Applied Energy, Elsevier, vol. 281(C).
    52. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    53. Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, Surendra Singh, 2015. "Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system," Energy, Elsevier, vol. 91(C), pages 816-832.
    54. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2015. "Performance of two-stage rotary desiccant cooling system with different regeneration temperatures," Energy, Elsevier, vol. 80(C), pages 556-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnagar, Essam & Zeoli, Alanis & Rahif, Ramin & Attia, Shady & Lemort, Vincent, 2023. "A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Albahri, O.S. & Alamoodi, A.H. & Deveci, Muhammet & Albahri, A.S. & Mahmoud, Moamin A. & Sharaf, Iman Mohamad & Coffman, D'Maris, 2023. "Multi-perspective evaluation of integrated active cooling systems using fuzzy decision making model," Energy Policy, Elsevier, vol. 182(C).
    3. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    4. Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
    5. Chen, Erjian & Xie, Mingxi & Jia, Teng & Zhao, Yao & Dai, Yanjun, 2022. "Performance assessment of a solar-assisted absorption-compression system for both heating and cooling," Applied Energy, Elsevier, vol. 328(C).
    6. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    7. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & Hassan, Hamdy, 2022. "Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    2. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    4. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Wang, Yunfeng & Li, Ming & Ji, Xu & Yu, Qiongfen & Li, Guoliang & Ma, Xun, 2018. "Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system," Applied Energy, Elsevier, vol. 224(C), pages 417-425.
    7. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    8. Tryfon C. Roumpedakis & Salvatore Vasta & Alessio Sapienza & George Kallis & Sotirios Karellas & Ursula Wittstadt & Mirko Tanne & Niels Harborth & Uwe Sonnenfeld, 2020. "Performance Results of a Solar Adsorption Cooling and Heating Unit," Energies, MDPI, vol. 13(7), pages 1-18, April.
    9. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    10. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    11. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    12. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    13. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    14. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    16. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    17. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    18. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    19. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    20. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.