IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i3p518-534.html
   My bibliography  Save this article

A review on adsorption working pairs for refrigeration

Author

Listed:
  • Wang, L.W.
  • Wang, R.Z.
  • Oliveira, R.G.

Abstract

Solid sorption refrigeration is a type of environmental benign and energy saving technology and the sorbents utilized can be divided into physical, chemical and composite sorbents, according to the nature of the forces involved in the adsorption process. The types, characteristics, advantages and disadvantages of different adsorbents, refrigerants and working pairs are summarized in this paper, together with the models that describe the adsorption equilibrium. Moreover, some of the procedures to prepare composite adsorbents are presented. The application of different working pairs for different situations is related with the adsorption heat, the adaptability to the driving temperature and to the desired working pressure. The methods to measure the adsorption quantity of different working pairs are compared, and future research directions of adsorption working pairs are also analyzed.

Suggested Citation

  • Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:3:p:518-534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00003-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saha, Bidyut B. & Boelman, Elisa C. & Kashiwagi, Takao, 1995. "Computational analysis of an advanced adsorption-refrigeration cycle," Energy, Elsevier, vol. 20(10), pages 983-994.
    2. Cacciola, G. & Hajji, A. & Maggio, G. & Restuccia, G., 1993. "Dynamic simulation of a recuperative adsorption heat pump," Energy, Elsevier, vol. 18(11), pages 1125-1137.
    3. Goetz, V. & Spinner, B. & Lepinasse, E., 1997. "A solid-gas thermochemical cooling system using BaCl2 and NiCl2," Energy, Elsevier, vol. 22(1), pages 49-58.
    4. Li, M. & Huang, H.B. & Wang, R.Z. & Wang, L.L. & Cai, W.D. & Yang, W.M., 2004. "Experimental study on adsorbent of activated carbon with refrigerant of methanol and ethanol for solar ice maker," Renewable Energy, Elsevier, vol. 29(15), pages 2235-2244.
    5. Kato, Y. & Sasaki, Y. & Yoshizawa, Y., 2005. "Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system," Energy, Elsevier, vol. 30(11), pages 2144-2155.
    6. Cho, Soon-Haeng & Kim, Jong-Nam, 1992. "Modeling of a silica gel/water adsorption-cooling system," Energy, Elsevier, vol. 17(9), pages 829-839.
    7. Anyanwu, E.E. & Ogueke, N.V., 2005. "Thermodynamic design procedure for solid adsorption solar refrigerator," Renewable Energy, Elsevier, vol. 30(1), pages 81-96.
    8. Lemmini, F. & Errougani, A., 2005. "Building and experimentation of a solar powered adsorption refrigerator," Renewable Energy, Elsevier, vol. 30(13), pages 1989-2003.
    9. Sumathy, K. & Zhongfu, Li, 1999. "Experiments with solar-powered adsorption ice-maker," Renewable Energy, Elsevier, vol. 16(1), pages 704-707.
    10. Iloeje, O.C. & Ndili, A.N. & Enibe, S.O., 1995. "Computer simulation of a CaCl2 solid-adsorption solar refrigerator," Energy, Elsevier, vol. 20(11), pages 1141-1151.
    11. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    12. Saha, Bidyut B. & Akisawa, Atsushi & Kashiwagi, Takao, 1997. "Silica gel water advanced adsorption refrigeration cycle," Energy, Elsevier, vol. 22(4), pages 437-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    3. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    4. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    5. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    6. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    7. Wang, L. & Chen, L. & Wang, H.L. & Liao, D.L., 2009. "The adsorption refrigeration characteristics of alkaline-earth metal chlorides and its composite adsorbents," Renewable Energy, Elsevier, vol. 34(4), pages 1016-1023.
    8. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K. & Sur, Anirban, 2017. "An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 364-376.
    9. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    10. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    11. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    12. An, G.L. & Wang, L.W. & Gao, J. & Wang, R.Z., 2018. "A review on the solid sorption mechanism and kinetic models of metal halide-ammonia working pairs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 783-792.
    13. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    14. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    15. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    16. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    17. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    18. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    19. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    20. Kiplagat, J.K. & Wang, R.Z. & Oliveira, R.G. & Li, T.X. & Liang, M., 2013. "Experimental study on the effects of the operation conditions on the performance of a chemisorption air conditioner powered by low grade heat," Applied Energy, Elsevier, vol. 103(C), pages 571-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:3:p:518-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.