IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp816-832.html
   My bibliography  Save this article

Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system

Author

Listed:
  • Jain, Vaibhav
  • Sachdeva, Gulshan
  • Kachhwaha, Surendra Singh

Abstract

Present work compares the performance of commercially available 170 kW vapor compression chiller with equivalent three configurations (parallel, series and combined series-parallel) of VCAIRS (vapor compression-absorption integrated refrigeration system) based on combined energy, exergy, economic and environmental (4E) analyses. Parallel, series and combined series-parallel configurations reduces the energy (electricity) consumption in the compressor by 50%, 76.8% and 88.3% respectively and consequently, reduce the significant amount of CO2 emission. Comparative exegetic analysis based on modified Gouy–Stodola law was performed which predicted higher irreversibility rate as compared to conventional approach. The thermoeconomic study shows that annual cost of the plant operation is 13.8%, 20.9% and 24.7% less for parallel, series and combined series-parallel configurations respectively as compared to equivalent VCRS (vapor compression refrigeration system) and after optimization, the same is further reduced by 8.1%, 8.5% and 4.7% respectively from the base value.

Suggested Citation

  • Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, Surendra Singh, 2015. "Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system," Energy, Elsevier, vol. 91(C), pages 816-832.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:816-832
    DOI: 10.1016/j.energy.2015.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    2. Rezayan, Omid & Behbahaninia, Ali, 2011. "Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems," Energy, Elsevier, vol. 36(2), pages 888-895.
    3. Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, S.S., 2015. "Thermodynamic modelling and parametric study of a low temperature vapour compression-absorption system based on modified Gouy-Stodola equation," Energy, Elsevier, vol. 79(C), pages 407-418.
    4. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    5. Gebreslassie, Berhane H. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle," Renewable Energy, Elsevier, vol. 46(C), pages 100-110.
    6. Sun, Z.G., 2008. "Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller," Energy, Elsevier, vol. 33(3), pages 431-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rech, Sergio & Finco, Elisa & Lazzaretto, Andrea, 2020. "A multicriteria approach to choose the best renewable refrigeration system for food preservation," Renewable Energy, Elsevier, vol. 154(C), pages 368-384.
    2. Ighball Baniasad Askari & Hossein Ghazizade-Ahsaee & Alibakhsh Kasaeian, 2023. "Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear fresnel and organic rankine cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9439-9484, September.
    3. Taheri, M.H. & Mosaffa, A.H. & Farshi, L. Garousi, 2017. "Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle," Energy, Elsevier, vol. 125(C), pages 162-177.
    4. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    5. Xu, Yingjie & Mao, Chengbin & Huang, Yuangong & Shen, Xi & Xu, Xiaoxiao & Chen, Guangming, 2021. "Performance evaluation and multi-objective optimization of a low-temperature CO2 heat pump water heater based on artificial neural network and new economic analysis," Energy, Elsevier, vol. 216(C).
    6. Kadam, Sambhaji T. & Kyriakides, Alexios-Spyridon & Khan, Muhammad Saad & Shehabi, Mohammad & Papadopoulos, Athanasios I. & Hassan, Ibrahim & Rahman, Mohammad Azizur & Seferlis, Panos, 2022. "Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling," Energy, Elsevier, vol. 243(C).
    7. Sun, Xiaojing & Zhuang, Yu & Liu, Linlin & Dong, Yachao & Zhang, Lei & Du, Jian, 2022. "Multi-objective optimization of heat exchange network and thermodynamic cycles integrated system for cooling and power cogeneration," Applied Energy, Elsevier, vol. 321(C).
    8. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    9. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    10. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    11. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    2. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    3. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    6. Abdullah, Mohammad Omar & Hieng, Tang Chung, 2010. "Comparative analysis of performance and techno-economics for a H2O-NH3-H2 absorption refrigerator driven by different energy sources," Applied Energy, Elsevier, vol. 87(5), pages 1535-1545, May.
    7. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    8. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
    9. Jie, Pengfei & Yan, Fuchun & Li, Jing & Zhang, Yumei & Wen, Zhimei, 2019. "Optimizing the insulation thickness of walls of existing buildings with CHP-based district heating systems," Energy, Elsevier, vol. 189(C).
    10. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    11. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    12. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    13. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    14. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.
    15. Roumpedakis, Tryfon C. & Kallis, George & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Life cycle analysis of ZEOSOL solar cooling and heating system," Renewable Energy, Elsevier, vol. 154(C), pages 82-98.
    16. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    17. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    18. Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, S.S., 2015. "Thermodynamic modelling and parametric study of a low temperature vapour compression-absorption system based on modified Gouy-Stodola equation," Energy, Elsevier, vol. 79(C), pages 407-418.
    19. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    20. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:816-832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.