IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p743-d137968.html
   My bibliography  Save this article

Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g

Author

Listed:
  • Guozheng Li

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Rui Wang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Tao Zhang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Mengjun Ming

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

The integration of renewable energies into combined cooling, heating, and power (CCHP) systems has become increasingly popular in recent years. However, the optimization of renewable energies integrated CCHP (RECCHP) systems (i.e., optimal component configurations) is far from being well addressed, especially in isolated mode. This study aims to fill this research gap. A multi-objective optimization model characterizing the system reliability, system cost, and environmental sustainability is constructed. In this model, the objectives include minimization of annual total cost (ATC), carbon dioxide emission (CDE), and loss of energy supply probability (LESP). The decision variables representing the configuration of the RECCHP system include the number of photovoltaic (PV) panels and wind turbines (WTs), the tilt angle of PV panels, the height of WTs, the maximum fuel consumption, and the capacity of battery and heat storage tanks (HSTs). The multi-objective model is solved by a multi-objective evolutionary algorithm, namely, the preference-inspired coevolutionary algorithm (PICEA-g), resulting in a set of Pareto optimal (trade-off) solutions. Then, a decision-making process is demonstrated, selecting a preferred solution amongst those trade-off solutions by further considering the decision-maker preferences. Furthermore, on the optimization of the RECCHP system, operational strategies (i.e., following electric load, FEL, and following thermal load, FTL) are considered, respectively. Experimental results show that the FEL and FTL strategies lead to different optimal configurations. In general, the FTL is recommended in summer and winter, while the FEL is more suitable for spring and autumn. Compared with traditional energy systems, RECCHP has better economic and environmental advantages.

Suggested Citation

  • Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:743-:d:137968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    3. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    4. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim & Yong-Hoon Im & Jae-Yong Lee, 2017. "Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations," Energies, MDPI, vol. 10(6), pages 1-21, June.
    5. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    6. Evangelos Bellos & Christos Tzivanidis, 2017. "Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors," Energies, MDPI, vol. 10(7), pages 1-31, June.
    7. Mengjun Ming & Rui Wang & Yabing Zha & Tao Zhang, 2017. "Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(5), pages 1-15, May.
    8. Abedi, S. & Alimardani, A. & Gharehpetian, G.B. & Riahy, G.H. & Hosseinian, S.H., 2012. "A comprehensive method for optimal power management and design of hybrid RES-based autonomous energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1577-1587.
    9. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    10. Wang, Rui & Purshouse, Robin C. & Fleming, Peter J., 2015. "Preference-inspired co-evolutionary algorithms using weight vectors," European Journal of Operational Research, Elsevier, vol. 243(2), pages 423-441.
    11. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    12. Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
    13. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    14. Eun-Chul Kang & Euy-Joon Lee & Mohamed Ghorab & Libing Yang & Evgueniy Entchev & Kwang-Seob Lee & Nam-Jin Lyu, 2016. "Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application," Energies, MDPI, vol. 9(9), pages 1-17, September.
    15. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    16. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    17. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    18. Fei Wang & Lidong Zhou & Hui Ren & Xiaoli Liu, 2017. "Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy and Improved Combined Cooling-Heating-Power Strategy Based Two-Time Scale Multi-Objective Optimizat," Energies, MDPI, vol. 10(12), pages 1-23, November.
    19. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    20. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    21. Yan Xu & Wenyu Li & Jiahai Yuan, 2017. "Economical Efficiency of Combined Cooling Heating and Power Systems Based on an Enthalpy Method," Energies, MDPI, vol. 10(11), pages 1-16, November.
    22. Rong, Aiying & Lahdelma, Risto, 2007. "An effective heuristic for combined heat-and-power production planning with power ramp constraints," Applied Energy, Elsevier, vol. 84(3), pages 307-325, March.
    23. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    24. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    25. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    26. Alexandros Arsalis & Andreas N. Alexandrou & George E. Georghiou, 2016. "Thermoeconomic Modeling and Parametric Study of a Photovoltaic-Assisted 1 MW e Combined Cooling, Heating, and Power System," Energies, MDPI, vol. 9(8), pages 1-15, August.
    27. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2006. "An efficient linear model and optimisation algorithm for multi-site combined heat and power production," European Journal of Operational Research, Elsevier, vol. 168(2), pages 612-632, January.
    28. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    29. Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, vol. 9(11), pages 1-13, November.
    30. Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2016. "Analysis of a Hybrid Solar-Assisted Trigeneration System," Energies, MDPI, vol. 9(9), pages 1-23, September.
    31. Satya Gopisetty & Peter Treffinger, 2016. "Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process," Energies, MDPI, vol. 10(1), pages 1-17, December.
    32. Cedillos Alvarado, Dagoberto & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2016. "A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: Mathematical formulation and case study," Applied Energy, Elsevier, vol. 180(C), pages 491-503.
    33. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    34. Lahdelma, Risto & Hakonen, Henri, 2003. "An efficient linear programming algorithm for combined heat and power production," European Journal of Operational Research, Elsevier, vol. 148(1), pages 141-151, July.
    35. Wu, Jing-yi & Wang, Jia-long & Li, Sheng, 2012. "Multi-objective optimal operation strategy study of micro-CCHP system," Energy, Elsevier, vol. 48(1), pages 472-483.
    36. Wang, Rui & Purshouse, Robin C. & Giagkiozis, Ioannis & Fleming, Peter J., 2015. "The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique," European Journal of Operational Research, Elsevier, vol. 243(2), pages 442-453.
    37. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    2. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Li, Yiming & Liu, Che & Zhang, Lizhi & Sun, Bo, 2021. "A partition optimization design method for a regional integrated energy system based on a clustering algorithm," Energy, Elsevier, vol. 219(C).
    4. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.
    5. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    6. Wang, Rui & Xiong, Jian & He, Min-fan & Gao, Liang & Wang, Ling, 2020. "Multi-objective optimal design of hybrid renewable energy system under multiple scenarios," Renewable Energy, Elsevier, vol. 151(C), pages 226-237.
    7. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    8. Nima Mirzaei Alavijeh & David Steen & Zack Norwood & Le Anh Tuan & Christos Agathokleous, 2020. "Cost-Effectiveness of Carbon Emission Abatement Strategies for a Local Multi-Energy System—A Case Study of Chalmers University of Technology Campus," Energies, MDPI, vol. 13(7), pages 1-23, April.
    9. Jaemin Park & Haesung Jo & Insu Kim, 2021. "The Selection of the Most Cost-Efficient Distributed Generation Type for a Combined Cooling Heat and Power System Used for Metropolitan Residential Customers," Energies, MDPI, vol. 14(18), pages 1-25, September.
    10. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    11. Yongli Wang & Haiyang Yu & Mingyue Yong & Yujing Huang & Fuli Zhang & Xiaohai Wang, 2018. "Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss," Energies, MDPI, vol. 11(7), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    3. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    4. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.
    5. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    6. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    7. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    8. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    10. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    11. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
    12. Dumitrascu Gheorghe & Feidt Michel & Popescu Aristotel & Grigorean Stefan, 2019. "Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics," Energies, MDPI, vol. 12(16), pages 1-21, August.
    13. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    14. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    15. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    16. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    17. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    18. Liting Zhang & Weijun Gao & Yongwen Yang & Fanyue Qian, 2020. "Impacts of Investment Cost, Energy Prices and Carbon Tax on Promoting the Combined Cooling, Heating and Power (CCHP) System of an Amusement Park Resort in Shanghai," Energies, MDPI, vol. 13(16), pages 1-22, August.
    19. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    20. Ge, Yi & Han, Jitian & Ma, Qingzhao & Feng, Jiahui, 2022. "Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:743-:d:137968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.