IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v99y2016icp202-220.html
   My bibliography  Save this article

Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system

Author

Listed:
  • Li, Miao
  • Mu, Hailin
  • Li, Nan
  • Ma, Baoyu

Abstract

With the encouragement of LNG (liquefied natural gas) application in China, CCHP (combined cooling heating and power) system fueled by natural gas has been receiving increasing attention. This paper presents optimization of CCHP system on their design and operation from energetic analysis, economic operation and environment effect viewpoints. CCHP system for hotels, offices and residential buildings in Dalian (China) is given to ascertain the effectiveness of the model. Weighting method and fuzzy optimum selection theory are employed to evaluate the integrated performances of CCHP systems with various operation strategies. Results show that: (1) Hotels have the greatest contribution (42.28%) to the energy savings based on energetic analysis sub-model because of their relatively stable electricity loads. (2) CCHP systems reduce the annual total costs for all operation cases compared with the reference system for hotels and offices. However, CCHP system achieves no economic merits for residential buildings. (3) The applications of the CCHP system decrease pollutant emissions in all operation cases for the studied buildings. (4) CCHP system driven by gas engine has better performance than driven by gas turbine. Coupled with renewable energy sources and with thermal storage tank are mostly optimum operation cases from energetic, economic and environment criteria.

Suggested Citation

  • Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
  • Handle: RePEc:eee:energy:v:99:y:2016:i:c:p:202-220
    DOI: 10.1016/j.energy.2016.01.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fazlollahi, Samira & Becker, Gwenaelle & Ashouri, Araz & Maréchal, François, 2015. "Multi-objective, multi-period optimization of district energy systems: IV – A case study," Energy, Elsevier, vol. 84(C), pages 365-381.
    2. Lin, Wensheng & Zhang, Na & Gu, Anzhong, 2010. "LNG (liquefied natural gas): A necessary part in China's future energy infrastructure," Energy, Elsevier, vol. 35(11), pages 4383-4391.
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Shi, Guo-Hua & Zhang, Xu-Tao, 2008. "A fuzzy multi-criteria decision-making model for trigeneration system," Energy Policy, Elsevier, vol. 36(10), pages 3823-3832, October.
    4. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    5. Wang, Jiangjiang & Zhai, Zhiqiang John & Zhang, Chunfa & Jing, Youyin, 2010. "Environmental impact analysis of BCHP system in different climate zones in China," Energy, Elsevier, vol. 35(10), pages 4208-4216.
    6. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    7. Ebrahimi, Masood & Keshavarz, Ali, 2013. "Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates," Energy, Elsevier, vol. 54(C), pages 291-301.
    8. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    9. Tichi, S.G. & Ardehali, M.M. & Nazari, M.E., 2010. "Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm," Energy Policy, Elsevier, vol. 38(10), pages 6240-6250, October.
    10. Facci, Andrea Luigi & Andreassi, Luca & Ubertini, Stefano, 2014. "Optimization of CHCP (combined heat power and cooling) systems operation strategy using dynamic programming," Energy, Elsevier, vol. 66(C), pages 387-400.
    11. Fumo, Nelson & Chamra, Louay M., 2010. "Analysis of combined cooling, heating, and power systems based on source primary energy consumption," Applied Energy, Elsevier, vol. 87(6), pages 2023-2030, June.
    12. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    13. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    14. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Emission operational strategy for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 86(11), pages 2344-2350, November.
    15. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    16. Ruan, Yingjun & Liu, Qingrong & Zhou, Weiguo & Firestone, Ryan & Gao, Weijun & Watanabe, Toshiyuki, 2009. "Optimal option of distributed generation technologies for various commercial buildings," Applied Energy, Elsevier, vol. 86(9), pages 1641-1653, September.
    17. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    18. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    19. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    20. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    21. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    22. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    23. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    24. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Analysis of cooling, heating, and power systems based on site energy consumption," Applied Energy, Elsevier, vol. 86(6), pages 928-932, June.
    25. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    26. Bianchi, Michele & De Pascale, Andrea & Spina, Pier Ruggero, 2012. "Guidelines for residential micro-CHP systems design," Applied Energy, Elsevier, vol. 97(C), pages 673-685.
    27. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    28. Gao, Penghui & Li, Wangliang & Cheng, Yongpan & Tong, YenWah & Dai, Yanjun & Wang, Ruzhu, 2014. "Thermodynamic performance assessment of CCHP system driven by different composition gas," Applied Energy, Elsevier, vol. 136(C), pages 599-610.
    29. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun, 2012. "Optimal option of distributed energy systems for building complexes in different climate zones in China," Applied Energy, Elsevier, vol. 91(1), pages 156-165.
    30. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
    31. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources," Energy Policy, Elsevier, vol. 42(C), pages 286-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    2. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    3. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
    4. Miao Li & Yiran Feng & Maojun Zhou & Hailin Mu & Longxi Li & Yajun Wang, 2019. "Economic and Environmental Optimization for Distributed Energy System Integrated with District Energy Network," Energies, MDPI, vol. 12(10), pages 1-19, May.
    5. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    6. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    7. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    8. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    9. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun, 2012. "Optimal option of distributed energy systems for building complexes in different climate zones in China," Applied Energy, Elsevier, vol. 91(1), pages 156-165.
    10. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    11. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    12. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    13. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    14. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
    15. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    16. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    17. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    18. Gao, Jiajia & Kang, Jing & Zhang, Chong & Gang, Wenjie, 2018. "Energy performance and operation characteristics of distributed energy systems with district cooling systems in subtropical areas under different control strategies," Energy, Elsevier, vol. 153(C), pages 849-860.
    19. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    20. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:99:y:2016:i:c:p:202-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.