IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1630-d340289.html
   My bibliography  Save this article

Performance Results of a Solar Adsorption Cooling and Heating Unit

Author

Listed:
  • Tryfon C. Roumpedakis

    (Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Salvatore Vasta

    (Consiglio Nazionale delle Ricerche (CNR), Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano” (ITAE), 98126 Messina, Italy)

  • Alessio Sapienza

    (Consiglio Nazionale delle Ricerche (CNR), Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano” (ITAE), 98126 Messina, Italy)

  • George Kallis

    (Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Sotirios Karellas

    (Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Ursula Wittstadt

    (Fahrenheit GmbH, 80803 Munich, Germany)

  • Mirko Tanne

    (Fahrenheit GmbH, 80803 Munich, Germany)

  • Niels Harborth

    (AkoTec Produktionsgesellschaft mbH, 16278 Angermünde, Germany)

  • Uwe Sonnenfeld

    (AkoTec Produktionsgesellschaft mbH, 16278 Angermünde, Germany)

Abstract

The high environmental impact of conventional methods of cooling and heating increased the need for renewable energy deployment for covering thermal loads. Toward that direction, the proposed system aims at offering an efficient solar powered alternative, coupling a zeolite–water adsorption chiller with a conventional vapor compression cycle. The system is designed to operate under intermittent heat supply of low-temperature solar thermal energy (<90 °C) provided by evacuated tube collectors. A prototype was developed and tested in cooling mode operation. The results from the testing of separate components showed that the adsorption chiller was operating efficiently, achieving a maximum coefficient of performance (COP) of 0.65. With respect to the combined performance of the system, evaluated on a typical week of summer in Athens, the maximum reported COP was approximately 0.575, mainly due to the lower driving temperatures with a range of 75 °C. The corresponding mean energy efficiency ratio (EER) obtained was 5.8.

Suggested Citation

  • Tryfon C. Roumpedakis & Salvatore Vasta & Alessio Sapienza & George Kallis & Sotirios Karellas & Ursula Wittstadt & Mirko Tanne & Niels Harborth & Uwe Sonnenfeld, 2020. "Performance Results of a Solar Adsorption Cooling and Heating Unit," Energies, MDPI, vol. 13(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1630-:d:340289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lemmini, Fatiha & Errougani, Abdelmoussehel, 2007. "Experimentation of a solar adsorption refrigerator in Morocco," Renewable Energy, Elsevier, vol. 32(15), pages 2629-2641.
    2. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    3. Roumpedakis, Tryfon C. & Kallis, George & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Life cycle analysis of ZEOSOL solar cooling and heating system," Renewable Energy, Elsevier, vol. 154(C), pages 82-98.
    4. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
    5. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    6. Drosou, Vassiliki N. & Tsekouras, Panagiotis D. & Oikonomou, Th.I. & Kosmopoulos, Panos I. & Karytsas, Constantine S., 2014. "The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 463-472.
    7. Roumpedakis, Tryfon C. & Christou, Thomas & Monokrousou, Evropi & Braimakis, Konstantinos & Karellas, Sotirios, 2019. "Integrated ORC-Adsorption cycle: A first and second law analysis of potential configurations," Energy, Elsevier, vol. 179(C), pages 46-58.
    8. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    9. Kalkan, Naci & Young, E.A. & Celiktas, Ahmet, 2012. "Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6352-6383.
    10. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    11. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    12. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.
    13. Palomba, Valeria & Wittstadt, Ursula & Bonanno, Antonino & Tanne, Mirko & Harborth, Niels & Vasta, Salvatore, 2019. "Components and design guidelines for solar cooling systems: The experience of ZEOSOL," Renewable Energy, Elsevier, vol. 141(C), pages 678-692.
    14. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo, 2018. "Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1874-1908.
    15. Valeria Palomba & Efstratios Varvagiannis & Sotirios Karellas & Andrea Frazzica, 2019. "Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models," Energies, MDPI, vol. 12(6), pages 1-28, March.
    16. Ali Alahmer & Xiaolin Wang & K. C. Amanul Alam, 2020. "Dynamic and Economic Investigation of a Solar Thermal-Driven Two-Bed Adsorption Chiller under Perth Climatic Conditions," Energies, MDPI, vol. 13(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M.T. Nitsas & E.G. Papoutsis & I.P. Koronaki, 2020. "Experimental Performance Evaluation of an Integrated Solar-Driven Adsorption System in Terms of Thermal Storage and Cooling Capacity," Energies, MDPI, vol. 13(22), pages 1-15, November.
    2. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    3. Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.
    4. Rafał Figaj & Maciej Żołądek, 2021. "Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions," Energies, MDPI, vol. 14(4), pages 1-23, February.
    5. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Zacharie Tamainot-Telto & Stephen John Metcalf & Neilson Ng Yande, 2022. "Adsorption Solar Air Conditioning System for Singapore Climate," Energies, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    3. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    4. Figaj, Rafał & Żołądek, Maciej, 2021. "Experimental and numerical analysis of hybrid solar heating and cooling system for a residential user," Renewable Energy, Elsevier, vol. 172(C), pages 955-967.
    5. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    6. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. M.T. Nitsas & E.G. Papoutsis & I.P. Koronaki, 2020. "Experimental Performance Evaluation of an Integrated Solar-Driven Adsorption System in Terms of Thermal Storage and Cooling Capacity," Energies, MDPI, vol. 13(22), pages 1-15, November.
    8. Farkad A. Lattieff & Mohammed A. Atiya & Jasim M. Mahdi & Hasan Sh. Majdi & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Performance Analysis of a Solar Cooling System with Equal and Unequal Adsorption/Desorption Operating Time," Energies, MDPI, vol. 14(20), pages 1-16, October.
    9. Faizan Shabir & Muhammad Sultan & Yasir Niaz & Muhammad Usman & Sobhy M. Ibrahim & Yongqiang Feng & Bukke Kiran Naik & Abdul Nasir & Imran Ali, 2020. "Steady-State Investigation of Carbon-Based Adsorbent–Adsorbate Pairs for Heat Transformation Application," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    10. El Fadar, Abdellah, 2015. "Thermal behavior and performance assessment of a solar adsorption cooling system with finned adsorber," Energy, Elsevier, vol. 83(C), pages 674-684.
    11. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    12. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    14. Seol, Sung-Hoon & Nagano, Katsunori & Togawa, Junya, 2020. "Simulation on annual performance of solar adsorption heat pump system using composite natural mesoporous material in different metrological conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1587-1604.
    15. Wang, Ji & Hu, Eric & Blazewicz, Antoni & Ezzat, Akram W., 2018. "Simulation of accumulated performance of a solar thermal powered adsorption refrigeration system with daily climate conditions," Energy, Elsevier, vol. 165(PA), pages 487-498.
    16. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    17. Rafał Figaj & Maciej Żołądek, 2021. "Operation and Performance Assessment of a Hybrid Solar Heating and Cooling System for Different Configurations and Climatic Conditions," Energies, MDPI, vol. 14(4), pages 1-23, February.
    18. Askalany, Ahmed A. & Salem, M. & Ismael, I.M. & Ali, A.H.H. & Morsy, M.G. & Saha, Bidyut B., 2013. "An overview on adsorption pairs for cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 565-572.
    19. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    20. Allouhi, A. & Kousksou, T. & Jamil, A. & Agrouaz, Y. & Bouhal, T. & Saidur, R. & Benbassou, A., 2016. "Performance evaluation of solar adsorption cooling systems for vaccine preservation in Sub-Saharan Africa," Applied Energy, Elsevier, vol. 170(C), pages 232-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1630-:d:340289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.