IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip1p145-153.html
   My bibliography  Save this article

Sensitivity analysis of a photovoltaic solar plant in Chile

Author

Listed:
  • Bustos, F.
  • Toledo, A.
  • Contreras, J.
  • Fuentes, A.

Abstract

A total of 22 cities in Chile were analyzed focusing the development of a 30 MW Photovoltaic Solar Plant using RETScreen software. Results of the study indicate that Calama City presents interesting results, with a Capacity Factor of 34.0% and an Energy Production of 92523 MWh. However, with a discount rate of 12% and an evaluation of 30 years, a Net Present Value (NPV) of −67×106 USD and an Internal Rate of Return (IRR) of 7.0% were obtained due to the high investment cost. Applying a 40% incentive in Calama City, the NPV reaches 11×106 USD, with an IRR of 13.7%, thus obtaining positive financial results.

Suggested Citation

  • Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:145-153
    DOI: 10.1016/j.renene.2015.09.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pazheri, F.R. & Othman, M.F. & Malik, N.H., 2014. "A review on global renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 835-845.
    2. Harder, Elizabeth & Gibson, Jacqueline MacDonald, 2011. "The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates," Renewable Energy, Elsevier, vol. 36(2), pages 789-796.
    3. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    5. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    6. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    7. Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
    8. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    9. Khalid, Anjum & Junaidi, Haroon, 2013. "Study of economic viability of photovoltaic electric power for Quetta – Pakistan," Renewable Energy, Elsevier, vol. 50(C), pages 253-258.
    10. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    11. Monjas-Barroso, Manuel & Balibrea-Iniesta, José, 2013. "Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options," Energy Policy, Elsevier, vol. 55(C), pages 335-352.
    12. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    13. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    14. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    15. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    16. Larraín, Teresita & Escobar, Rodrigo, 2012. "Net energy analysis for concentrated solar power plants in northern Chile," Renewable Energy, Elsevier, vol. 41(C), pages 123-133.
    17. del Sol, Felipe & Sauma, Enzo, 2013. "Economic impacts of installing solar power plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 489-498.
    18. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    19. M. Bisi & R. Stagni & G. Gnudi, 2012. "Sensitivity analysis of an energetic muscle model applied at whole body level in recumbent pedalling," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 15(5), pages 527-538.
    20. Hemsath, Timothy L. & Alagheband Bandhosseini, Kaveh, 2015. "Sensitivity analysis evaluating basic building geometry's effect on energy use," Renewable Energy, Elsevier, vol. 76(C), pages 526-538.
    21. Hrayshat, Eyad S., 2009. "Viability of solar photovoltaics as an electricity generation source for Jordan," Renewable Energy, Elsevier, vol. 34(10), pages 2133-2140.
    22. Lee, Kyoung-Ho & Lee, Dong-Won & Baek, Nam-Choon & Kwon, Hyeok-Min & Lee, Chang-Jun, 2012. "Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen," Energy, Elsevier, vol. 47(1), pages 83-96.
    23. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods," International Journal of Production Economics, Elsevier, vol. 42(1), pages 79-96, November.
    24. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    2. Tomosk, Steve & Haysom, Joan E. & Wright, David, 2017. "Quantifying economic risk in photovoltaic power projects," Renewable Energy, Elsevier, vol. 109(C), pages 422-433.
    3. Bustos, Cristian & Watts, David & Ayala, Marysol, 2017. "Financial risk reduction in photovoltaic projects through ocean-atmospheric oscillations modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 548-568.
    4. Inmaculada Guaita-Pradas & Ana Blasco-Ruiz, 2020. "Analyzing Profitability and Discount Rates for Solar PV Plants. A Spanish Case," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    5. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    6. Guindon, A.-A. & Wright, D.J., 2020. "Analytical approach to quantitative risk assessment for solar power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    8. Nalini Dookie & Xsitaaz T. Chadee & Ricardo M. Clarke, 2022. "A Prefeasibility Solar Photovoltaic Tool for Tropical Small Island Developing States," Energies, MDPI, vol. 15(22), pages 1-28, November.
    9. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    10. J. Charles Rajesh Kumar & MA Majid, 2023. "Floating solar photovoltaic plants in India – A rapid transition to a green energy market and sustainable future," Energy & Environment, , vol. 34(2), pages 304-358, March.
    11. Olabomi, RasaqAdekunle & Jaafar, A. Bakar & Musa, Md Nor & Sarip, Shamsul & Ariffin, Azrin, 2017. "Techno-economic analysis of innovative production and application of solar thermal chilled water for agricultural soil cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 215-224.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elie, Luc & Granier, Caroline & Rigot, Sandra, 2021. "The different types of renewable energy finance: A Bibliometric analysis," Energy Economics, Elsevier, vol. 93(C).
    2. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    3. Cristofari, C. & Carutasiu, M.B. & Canaletti, J.L. & Norvaišienė, R. & Motte, F. & Notton, G., 2019. "Building integration of solar thermal systems-example of a refurbishment of a church rectory," Renewable Energy, Elsevier, vol. 137(C), pages 67-81.
    4. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    5. Mirzahosseini, Alireza Hajiseyed & Taheri, Taraneh, 2012. "Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2806-2811.
    6. Ruhang, Xu, 2016. "The restriction research for urban area building integrated grid-connected PV power generation potential," Energy, Elsevier, vol. 113(C), pages 124-143.
    7. Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
    8. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    9. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
    10. Curtin, Joseph & McInerney, Celine & Ó Gallachóir, Brian, 2017. "Financial incentives to mobilise local citizens as investors in low-carbon technologies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 534-547.
    11. Wu, Zhongqun & Sun, Hongxia, 2015. "Behavior of Chinese enterprises in evaluating wind power projects: A review based on survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 133-142.
    12. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    13. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.
    14. Ranjan Aneja & Umer J. Banday & Tanzeem Hasnat & Mustafa Koçoglu, 2017. "Renewable and Non-renewable Energy Consumption and Economic Growth: Empirical Evidence from Panel Error Correction Model," Jindal Journal of Business Research, , vol. 6(1), pages 76-85, June.
    15. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    16. Apergis, Nicholas & Payne, James E., 2011. "The renewable energy consumption-growth nexus in Central America," Applied Energy, Elsevier, vol. 88(1), pages 343-347, January.
    17. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    18. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    19. Apergis, Nicholas & Payne, James E., 2009. "Energy consumption and economic growth: Evidence from the Commonwealth of Independent States," Energy Economics, Elsevier, vol. 31(5), pages 641-647, September.
    20. Sheilla Nyasha & Yvonne Gwenhure & Nicholas M Odhiambo, 2018. "Energy consumption and economic growth in Ethiopia: A dynamic causal linkage," Energy & Environment, , vol. 29(8), pages 1393-1412, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:145-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.