IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp1425-1435.html
   My bibliography  Save this article

The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions

Author

Listed:
  • Zubi, Ghassan
  • Fracastoro, Gian Vincenzo
  • Lujano-Rojas, Juan M.
  • El Bakari, Khalil
  • Andrews, David

Abstract

Energy poverty in developing regions is a major global concern, with the rural areas of South Asia, South-East Asia and Sub-Saharan Africa being the most affected. The major residential energy consumption in these regions is for cooking and lighting, which is basically covered with traditional biomass and fossil fuels. This situation acts as a development barrier, while implying stress on resources and the environment. Solar home systems (SHS) can play an important role in overcoming this problem. Recent technological advances and cost reductions in lithium-ion batteries favour their use in such application. Domestic electric devices with outstanding energy efficiency are becoming the standard around the globe. This paper focuses on exploiting these innovations to provide a solution for domestic energy poverty in developing regions. The layout of a SHS that integrates a lithium-ion battery-pack and is complemented with LED lamps and an energy efficient multicooker is presented. The paper assesses the SHS in contrast with existing practices under domestic energy poverty, with consideration of the learning curve. It is concluded that the cost of energy of the SHS is slightly cheaper than the business as usual case on the short term, and notably cheaper on the longer run. Furthermore, a financing scheme is proposed to overcome implementation barriers. Government support is considered, and quantified based on the SHS carbon abatement and saved fossil fuel subsidies. A substantial share of the initial investment can be covered under such scheme. This case study allows to draw general conclusions on the potential of SHS as a solution for domestic energy poverty in developing regions, on the financing gaps that hamper implementation and eventually on the required actions to overcome these.

Suggested Citation

  • Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1425-1435
    DOI: 10.1016/j.renene.2018.08.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118310437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Jaiswal, Abhishek, 2017. "Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 922-934.
    3. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    4. Gebreegziabher, Zenebe & Mekonnen, Alemu & Kassie, Menale & Köhlin, Gunnar, 2012. "Urban energy transition and technology adoption: The case of Tigrai, northern Ethiopia," Energy Economics, Elsevier, vol. 34(2), pages 410-418.
    5. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    6. Pasaoglu, Guzay & Garcia, Nicolas Pardo & Zubi, Ghassan, 2018. "A multi-criteria and multi-expert decision aid approach to evaluate the future Turkish power plant portfolio," Energy Policy, Elsevier, vol. 119(C), pages 654-665.
    7. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    8. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.
    9. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    10. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
    11. Heltberg, Rasmus, 2004. "Fuel switching: evidence from eight developing countries," Energy Economics, Elsevier, vol. 26(5), pages 869-887, September.
    12. Zubi, Ghassan & Bernal-Agustín, José L. & Fandos Marín, Ana B., 2009. "Wind energy (30%) in the Spanish power mix--technically feasible and economically reasonable," Energy Policy, Elsevier, vol. 37(8), pages 3221-3226, August.
    13. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Atencio-Guerra, José L. & Rodrigues, Eduardo M.G. & Bernal-Agustín, José L. & Catalão, João P.S., 2016. "Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids," Applied Energy, Elsevier, vol. 179(C), pages 590-600.
    14. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    15. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    16. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    17. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    18. Bauer, Gordon, 2016. "Evaluation of usage and fuel savings of solar ovens in Nicaragua," Energy Policy, Elsevier, vol. 97(C), pages 250-257.
    19. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    20. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    21. Speirs, Jamie & Contestabile, Marcello & Houari, Yassine & Gross, Robert, 2014. "The future of lithium availability for electric vehicle batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 183-193.
    22. Zubi, Ghassan & Dufo-López, Rodolfo & Pasaoglu, Guzay & Pardo, Nicolás, 2016. "Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario," Applied Energy, Elsevier, vol. 176(C), pages 309-319.
    23. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    24. Prasanna, U.R. & Umanand, L., 2011. "Optimization and design of energy transport system for solar cooking application," Applied Energy, Elsevier, vol. 88(1), pages 242-251, January.
    25. Dufo-López, Rodolfo & Zubi, Ghassan & Fracastoro, Gian Vincenzo, 2012. "Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions," Applied Energy, Elsevier, vol. 91(1), pages 255-262.
    26. Zubi, Ghassan, 2011. "Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain," Energy Policy, Elsevier, vol. 39(12), pages 8070-8077.
    27. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fotio, Herve Kaffo & Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Financing renewable energy generation in SSA: Does financial integration matter?," Renewable Energy, Elsevier, vol. 201(P2), pages 47-59.
    2. Zhao, Shixiu & He, Xiaoyi & Faxritdinovna, Kenjayeva Umriya, 2023. "Does industrial structure changes matter in renewable energy development? Mediating role of green finance development," Renewable Energy, Elsevier, vol. 214(C), pages 350-358.
    3. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    4. Tan, Yunhui & Wang, Quan & Zhang, Zhaoyang, 2023. "Near-real-time estimation of global horizontal irradiance from Himawari-8 satellite data," Renewable Energy, Elsevier, vol. 215(C).
    5. Henry, Candise L. & Baker, Justin S. & Shaw, Brooke K. & Kondash, Andrew J. & Leiva, Benjamín & Castellanos, Edwin & Wade, Christopher M. & Lord, Benjamin & Van Houtven, George & Redmon, Jennifer Hopo, 2021. "How will renewable energy development goals affect energy poverty in Guatemala?," Energy Economics, Elsevier, vol. 104(C).
    6. Ogundiran Soumonni & Kalu Ojah, 2022. "Innovative and mission‐oriented financing of renewable energy in Sub‐Saharan Africa: A review and conceptual framework," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    7. Zhang, Ziwei & Fu, Hu & Xie, Shiqi & Cifuentes-Faura, Javier & Urinov, Bobur, 2023. "Role of green finance and regional environmental efficiency in China," Renewable Energy, Elsevier, vol. 214(C), pages 407-415.
    8. Vivien Kizilcec & Priti Parikh & Iwona Bisaga, 2021. "Examining the Journey of a Pay-as-You-Go Solar Home System Customer: A Case Study of Rwanda," Energies, MDPI, vol. 14(2), pages 1-26, January.
    9. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).
    10. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    11. Recep Ulucak & Ramazan Sari & Seyfettin Erdogan & Rui Alexandre Castanho, 2021. "Bibliometric Literature Analysis of a Multi-Dimensional Sustainable Development Issue: Energy Poverty," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    12. Jugend, Daniel & Fiorini, Paula De Camargo & Armellini, Fabiano & Ferrari, Aline Gabriela, 2020. "Public support for innovation: A systematic review of the literature and implications for open innovation," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    13. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    14. Du, Juntao & Song, Malin & Xie, Bing, 2022. "Eliminating energy poverty in Chinese households: A cognitive capability framework," Renewable Energy, Elsevier, vol. 192(C), pages 373-384.
    15. Ioan Cristian Hoarcă & Nicu Bizon & Ioan Sorin Șorlei & Phatiphat Thounthong, 2023. "Sizing Design for a Hybrid Renewable Power System Using HOMER and iHOGA Simulators," Energies, MDPI, vol. 16(4), pages 1-25, February.
    16. Olumide Hassan & Stephen Morse & Matthew Leach, 2020. "The Energy Lock-In Effect of Solar Home Systems: A Case Study in Rural Nigeria," Energies, MDPI, vol. 13(24), pages 1-24, December.
    17. Khan, Imran, 2020. "Impacts of energy decentralization viewed through the lens of the energy cultures framework: Solar home systems in the developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Leticia dos Santos Benso Maciel & Benedito Donizeti Bonatto & Hector Arango & Lucas Gustavo Arango, 2020. "Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model," Energies, MDPI, vol. 13(18), pages 1-20, September.
    19. Thomas, P.J.M. & Sandwell, P. & Williamson, S.J. & Harper, P.W., 2021. "A PESTLE analysis of solar home systems in refugee camps in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation," Renewable Energy, Elsevier, vol. 94(C), pages 280-293.
    3. Zubi, Ghassan & Dufo-López, Rodolfo & Pasaoglu, Guzay & Pardo, Nicolás, 2016. "Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario," Applied Energy, Elsevier, vol. 176(C), pages 309-319.
    4. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    7. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    8. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Aziz, Shakila & Barua, Suborna & Chowdhury, Shahriar Ahmed, 2022. "Cooking energy use in Bangladesh: Evidence from technology and fuel choice," Energy, Elsevier, vol. 250(C).
    10. John D. Graham & John A. Rupp & Eva Brungard, 2021. "Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    11. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    12. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    13. Dufo-López, Rodolfo & Zubi, Ghassan & Fracastoro, Gian Vincenzo, 2012. "Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions," Applied Energy, Elsevier, vol. 91(1), pages 255-262.
    14. Sajid Ali & Choon-Man Jang, 2020. "Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Remote Island," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    15. Ramchandra Bhandari & Surendra Pandit, 2018. "Electricity as a Cooking Means in Nepal—A Modelling Tool Approach," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    16. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    18. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    19. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    20. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1425-1435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.