IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp65-78.html
   My bibliography  Save this article

Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana

Author

Listed:
  • Opoku, Richard
  • Obeng, George Y.
  • Adjei, Eunice A.
  • Davis, Francis
  • Akuffo, Fred O.

Abstract

One of the key factors affecting progress of renewable energy (RE) in the residential sector in Africa is the unavailability of net-metering systems in many of its member-state countries. Huge battery storage would have to be put in place by individual households owning solar home systems (SHS) to store energy for early morning and night-time use, making the systems not cost-competitive. In this study, a new concept based on “integrated system efficiency (ISE)” has been developed to maximize direct use of electricity from SHS without net-metering. In a case study, real-time power consumption and solar PV electricity generation were monitored for an installed SHS in Ghana. The result showed that, in the absence of net-metering system, sustainable hybrid SHS can be realized if high consumption electrical loads comprising refrigeration systems, water pumping, and washing machines are shifted to daytime use, using ISE. The significant contribution of this study is that, for SHS without net-metering, a new performance parameter called “solar system redundancy factor” is identified as more appropriate indicator for measuring the actual usage of the PV electricity generation. Using the ISE concept developed in this study, the redundancy factor was minimized from 63.2% to 39.8% for the SHS.

Suggested Citation

  • Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:65-78
    DOI: 10.1016/j.renene.2020.03.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thakur, Jagruti & Chakraborty, Basab, 2018. "Impact of increased solar penetration on bill savings of net metered residential consumers in India," Energy, Elsevier, vol. 162(C), pages 776-786.
    2. Shi, Xing & Tian, Zhichao & Chen, Wenqiang & Si, Binghui & Jin, Xing, 2016. "A review on building energy efficient design optimization rom the perspective of architects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 872-884.
    3. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    4. Ye, Yuxiang & Koch, Steven F. & Zhang, Jiangfeng, 2018. "Determinants of household electricity consumption in South Africa," Energy Economics, Elsevier, vol. 75(C), pages 120-133.
    5. Gautier, Axel & Hoet, Brieuc & Jacqmin, Julien & Van Driessche, Sarah, 2019. "Self-consumption choice of residential PV owners under net-metering," Energy Policy, Elsevier, vol. 128(C), pages 648-653.
    6. Bruck, Maira & Sandborn, Peter & Goudarzi, Navid, 2018. "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Elsevier, vol. 122(C), pages 131-139.
    7. Londo, Marc & Matton, Robin & Usmani, Omar & van Klaveren, Marieke & Tigchelaar, Casper & Brunsting, Suzanne, 2020. "Alternatives for current net metering policy for solar PV in the Netherlands: A comparison of impacts on business case and purchasing behaviour of private homeowners, and on governmental costs," Renewable Energy, Elsevier, vol. 147(P1), pages 903-915.
    8. Chesser, Michael & Hanly, Jim & Cassells, Damien & Apergis, Nicholas, 2018. "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, Elsevier, vol. 122(C), pages 36-44.
    9. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.
    10. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    11. Savvides, Andreas & Vassiliades, Constantinos & Michael, Aimilios & Kalogirou, Soteris, 2019. "Siting and building-massing considerations for the urban integration of active solar energy systems," Renewable Energy, Elsevier, vol. 135(C), pages 963-974.
    12. Paulescu, Marius & Brabec, Marek & Boata, Remus & Badescu, Viorel, 2017. "Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants," Energy, Elsevier, vol. 121(C), pages 792-802.
    13. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    14. Tayal, Dev & Evers, Uwana, 2018. "Consumer preferences and electricity pricing reform in Western Australia," Utilities Policy, Elsevier, vol. 54(C), pages 115-124.
    15. Comello, Stephen & Reichelstein, Stefan, 2017. "Cost competitiveness of residential solar PV: The impact of net metering restrictions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 46-57.
    16. Damari, Yuval & Kissinger, Meidad, 2018. "An integrated analysis of households' electricity consumption in Israel," Energy Policy, Elsevier, vol. 119(C), pages 51-58.
    17. Huang, Bin-Juine & Hou, Tung-Fu & Hsu, Po-Chien & Lin, Tse-Han & Chen, Yan-Tze & Chen, Chi-Wen & Li, Kang & Lee, K.Y., 2016. "Design of direct solar PV driven air conditioner," Renewable Energy, Elsevier, vol. 88(C), pages 95-101.
    18. Mohandes, Nassma & Sanfilippo, Antonio & Al Fakhri, Marwa, 2019. "Modeling residential adoption of solar energy in the Arabian Gulf Region," Renewable Energy, Elsevier, vol. 131(C), pages 381-389.
    19. Tongsopit, Sopitsuda & Junlakarn, Siripha & Wibulpolprasert, Wichsinee & Chaianong, Aksornchan & Kokchang, Phimsupha & Hoang, Nghia Vu, 2019. "The economics of solar PV self-consumption in Thailand," Renewable Energy, Elsevier, vol. 138(C), pages 395-408.
    20. Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.
    21. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    22. Pueyo, Ana, 2018. "What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana," World Development, Elsevier, vol. 109(C), pages 85-100.
    23. Thakur, Jagruti & Rauner, Sebastian & Darghouth, Naïm R. & Chakraborty, Basab, 2018. "Exploring the impact of increased solar deployment levels on residential electricity bills in India," Renewable Energy, Elsevier, vol. 120(C), pages 512-523.
    24. Comello, Stephen & Reichelstein, Stefan, 2016. "Cost Competitiveness of Residential Solar PV: The Impact of Net Metering Restrictions," Research Papers 3418, Stanford University, Graduate School of Business.
    25. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    26. Koumparou, Ioannis & Christoforidis, Georgios C. & Efthymiou, Venizelos & Papagiannis, Grigoris K. & Georghiou, George E., 2017. "Configuring residential PV net-metering policies – A focus on the Mediterranean region," Renewable Energy, Elsevier, vol. 113(C), pages 795-812.
    27. Cao, Sunliang & Sirén, Kai, 2014. "Impact of simulation time-resolution on the matching of PV production and household electric demand," Applied Energy, Elsevier, vol. 128(C), pages 192-208.
    28. Johnson, Erik & Beppler, Ross & Blackburn, Chris & Staver, Benjamin & Brown, Marilyn & Matisoff, Daniel, 2017. "Peak shifting and cross-class subsidization: The impacts of solar PV on changes in electricity costs," Energy Policy, Elsevier, vol. 106(C), pages 436-444.
    29. Chaianong, Aksornchan & Tongsopit, Sopitsuda & Bangviwat, Athikom & Menke, Christoph, 2019. "Bill saving analysis of rooftop PV customers and policy implications for Thailand," Renewable Energy, Elsevier, vol. 131(C), pages 422-434.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esposito, Luca, 2023. "Renewable energy consumption and per capita income: An empirical analysis in Finland," Renewable Energy, Elsevier, vol. 209(C), pages 558-568.
    2. Vivien Kizilcec & Catalina Spataru & Aldo Lipani & Priti Parikh, 2022. "Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access," Energies, MDPI, vol. 15(3), pages 1-25, January.
    3. Shabbir, Noman & Kütt, Lauri & Raja, Hadi A. & Jawad, Muhammad & Allik, Alo & Husev, Oleksandr, 2022. "Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heleno, Miguel & Sehloff, David & Coelho, Antonio & Valenzuela, Alan, 2020. "Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies," Applied Energy, Elsevier, vol. 279(C).
    2. Aksornchan Chaianong & Athikom Bangviwat & Christoph Menke & Naïm R. Darghouth, 2019. "Cost–Benefit Analysis of Rooftop PV Systems on Utilities and Ratepayers in Thailand," Energies, MDPI, vol. 12(12), pages 1-26, June.
    3. Wichsinee Wibulpolprasert & Umnouy Ponsukcharoen & Siripha Junlakarn & Sopitsuda Tongsopit, 2021. "Preliminarily Screening Geographical Hotspots for New Rooftop PV Installation: A Case Study in Thailand," Energies, MDPI, vol. 14(11), pages 1-30, June.
    4. Hidayatno, Akhmad & Setiawan, Andri D. & Wikananda Supartha, I Made & Moeis, Armand O. & Rahman, Irvanu & Widiono, Eddie, 2020. "Investigating policies on improving household rooftop photovoltaics adoption in Indonesia," Renewable Energy, Elsevier, vol. 156(C), pages 731-742.
    5. Hossein Heirani & Naser Bagheri Moghaddam & Sina Labbafi & Seyedali Sina, 2022. "A Business Model for Developing Distributed Photovoltaic Systems in Iran," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    6. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    7. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    8. Michas, Serafeim & Stavrakas, Vassilis & Papadelis, Sotiris & Flamos, Alexandros, 2020. "A transdisciplinary modeling framework for the participatory design of dynamic adaptive policy pathways," Energy Policy, Elsevier, vol. 139(C).
    9. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    10. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    11. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    12. To, Thanh & Heleno, Miguel & Valenzuela, Alan, 2022. "Risk-constrained multi-period investment model for Distributed Energy Resources considering technology costs and regulatory uncertainties," Applied Energy, Elsevier, vol. 319(C).
    13. Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
    14. Alessandro Burgio & Daniele Menniti & Nicola Sorrentino & Anna Pinnarelli & Zbigniew Leonowicz, 2020. "Influence and Impact of Data Averaging and Temporal Resolution on the Assessment of Energetic, Economic and Technical Issues of Hybrid Photovoltaic-Battery Systems," Energies, MDPI, vol. 13(2), pages 1-26, January.
    15. Chaianong, Aksornchan & Bangviwat, Athikom & Menke, Christoph & Breitschopf, Barbara & Eichhammer, Wolfgang, 2020. "Customer economics of residential PV–battery systems in Thailand," Renewable Energy, Elsevier, vol. 146(C), pages 297-308.
    16. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
    17. Mihaylov, Mihail & Rădulescu, Roxana & Razo-Zapata, Iván & Jurado, Sergio & Arco, Leticia & Avellana, Narcís & Nowé, Ann, 2019. "Comparing stakeholder incentives across state-of-the-art renewable support mechanisms," Renewable Energy, Elsevier, vol. 131(C), pages 689-699.
    18. Jiménez-Castillo, G. & Muñoz-Rodriguez, F.J. & Rus-Casas, C. & Talavera, D.L., 2020. "A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage," Renewable Energy, Elsevier, vol. 148(C), pages 1017-1033.
    19. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    20. Kirsten Gram-Hanssen & Anders Rhiger Hansen & Mette Mechlenborg, 2020. "Danish PV Prosumers’ Time-Shifting of Energy-Consuming Everyday Practices," Sustainability, MDPI, vol. 12(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:65-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.