IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp473-486.html
   My bibliography  Save this article

Empirical distributions of stock returns: Mixed normal or kernel density?

Author

Listed:
  • Yan, Hanhuan
  • Han, Liyan

Abstract

A preponderance of research evidence shows that normal distributions cannot capture the behaviour of stock returns. In some empirical experiments, alternatives to normal distributions have been applied to stock data on a case-by-case basis, but no simple and practical general solutions exist to capture stock behaviour. As a simple methodology, the normal mixture model is a linear combination of normal distributions that can be directly used to approximate the characteristics of stock returns. In this paper, we recommend usage of the normal mixture model as a general method to understand stock behaviour. We also compare the performance of different normal mixture models with kernel density estimations for ten major stock market indexes and two individual stocks from the years 2000 to 2016. Empirical results show that the normal mixture model with three components better represents the behaviour of stock returns, both statistically and economically, than models based on normal distributions and kernel density estimations.

Suggested Citation

  • Yan, Hanhuan & Han, Liyan, 2019. "Empirical distributions of stock returns: Mixed normal or kernel density?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 473-486.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:473-486
    DOI: 10.1016/j.physa.2018.09.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312111
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Vedat Akgiray & G. Geoffrey Booth, 1987. "Compound Distribution Models Of Stock Returns: An Empirical Comparison," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 10(3), pages 269-280, September.
    3. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    4. Harvey, Andrew & Oryshchenko, Vitaliy, 2012. "Kernel density estimation for time series data," International Journal of Forecasting, Elsevier, vol. 28(1), pages 3-14.
    5. Joerg Luedicke & Alberto Bernacchia, 2014. "Self-consistent density estimation," Stata Journal, StataCorp LP, vol. 14(2), pages 237-258, June.
    6. Baaquie, Belal E. & Yu, Miao, 2017. "Option price and market instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 512-535.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.
    9. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    10. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    11. Linden, Mikael, 2001. "A Model for Stock Return Distribution," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(2), pages 159-169, April.
    12. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    13. Yungtai Lo, 2012. "Estimating the prevalence of low-lumbar spine bone mineral density in older men with or at risk for HIV infection using normal mixture models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2247-2258, June.
    14. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    15. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    16. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    17. Alberto Bernacchia & Simone Pigolotti, 2011. "Self‐consistent method for density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 407-422, June.
    18. Xiong, Xiong & Bian, Yuxiang & Shen, Dehua, 2018. "The time-varying correlation between policy uncertainty and stock returns: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 413-419.
    19. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    20. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    21. Adrian R. Pagan & Kirill A. Sossounov, 2003. "A simple framework for analysing bull and bear markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 23-46.
    22. Shen, Dehua & Li, Xiao & Xue, Mei & Zhang, Wei, 2017. "Does microblogging convey firm-specific information? Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 621-626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leovardo Mata Mata & José Antonio Núñez Mora & Ramona Serrano Bautista, 2021. "Multivariate Distribution in the Stock Markets of Brazil, Russia, India, and China," SAGE Open, , vol. 11(2), pages 21582440211, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    3. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    4. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    5. Grothe, Oliver & Schmidt, Rafael, 2010. "Scaling of Lévy–Student processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1455-1463.
    6. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    7. Suárez-García, Pablo & Gómez-Ullate, David, 2013. "Scaling, stability and distribution of the high-frequency returns of the Ibex35 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1409-1417.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    10. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    11. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, 2016. "Statistical Modeling Of Stock Returns: Explanatory Or Descriptive? A Historical Survey With Some Methodological Reflections," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 149-164, February.
    12. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    13. Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
    14. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    15. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    16. Eric Luxenberg & Stephen Boyd, 2022. "Portfolio Construction with Gaussian Mixture Returns and Exponential Utility via Convex Optimization," Papers 2205.04563, arXiv.org, revised Aug 2022.
    17. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, "undated". "Statistical Modeling of Stock Returns: Explanatory or Descriptive? A Historical Survey with Some Methodological Reflections," DEOS Working Papers 1331, Athens University of Economics and Business.
    18. Xu, Yang & Han, Liyan & Wan, Li & Yin, Libo, 2019. "Dynamic link between oil prices and exchange rates: A non-linear approach," Energy Economics, Elsevier, vol. 84(C).
    19. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    20. Dubovikov, M.M & Starchenko, N.V & Dubovikov, M.S, 2004. "Dimension of the minimal cover and fractal analysis of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 591-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:473-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.