Advanced Search
MyIDEAS: Login

The continuous time random walk formalism in financial markets

Contents:

Author Info

  • J. Masoliver
  • M. Montero
  • J. Perello
  • G. H. Weiss

Abstract

We adapt continuous time random walk (CTRW) formalism to describe asset price evolution and discuss some of the problems that can be treated using this approach. We basically focus on two aspects: (i) the derivation of the price distribution from high-frequency data, and (ii) the inverse problem, obtaining information on the market microstructure as reflected by high-frequency data knowing only the daily volatility. We apply the formalism to financial data to show that the CTRW offers alternative tools to deal with several complex issues of financial markets.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arxiv.org/pdf/physics/0611138
File Function: Latest version
Download Restriction: no

Bibliographic Info

Paper provided by arXiv.org in its series Papers with number physics/0611138.

as in new window
Length:
Date of creation: Nov 2006
Date of revision:
Publication status: Published in Journal of Economic Behaviour and Organization 61 (2006) 577-598.
Handle: RePEc:arx:papers:physics/0611138

Contact details of provider:
Web page: http://arxiv.org/

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
  2. Enrico Scalas & Rudolf Gorenflo & Francesco Mainardi, 2000. "Fractional calculus and continuous-time finance," Papers cond-mat/0001120, arXiv.org.
  3. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
  4. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
  5. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
  6. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  7. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  9. Jaume Masoliver & Miquel Montero & George H. Weiss, 2002. "A continuous time random walk model for financial distributions," Papers cond-mat/0210513, arXiv.org.
  10. R. Kutner & F. Switała, 2003. "Stochastic simulations of time series within Weierstrass-Mandelbrot walks," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 201-211.
  11. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
  2. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
  3. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
  4. Naoya Sazuka & Jun-ichi Inoue & Enrico Scalas, 2008. "The distribution of first-passage times and durations in FOREX and future markets," Papers 0808.0372, arXiv.org.
  5. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
  6. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0611138. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.