IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp179-185.html
   My bibliography  Save this article

Economic growth based in carbon dioxide emission intensity

Author

Listed:
  • Vujović, Tanja
  • Petković, Zdravka
  • Pavlović, Miloš
  • Jović, Srdjan

Abstract

Energy consumption could has great impact of economic development and on carbon dioxide emission (CO2) intensity. However there are many possibilities to avoid these undesirable problems. One of the solution is to use more alternative and renewable energy sources but CO2 emission intensity from the other sources need to be investigated more. Therefore in this article was analyzed the CO2 emission intensity based on the alternative, fossil and renewable energy. It was analyzed also the economic growth based on the CO2 emission intensity. Neuro-fuzzy method was applied to select the most impactful energy factor for the CO2 emission intensity and economic growth. Presented results confirmed that the alternative energy has the highest influence on the CO2 emission intensity. CO2 emissions intensity from solid fuel has the highest influence on the economic growth.

Suggested Citation

  • Vujović, Tanja & Petković, Zdravka & Pavlović, Miloš & Jović, Srdjan, 2018. "Economic growth based in carbon dioxide emission intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 179-185.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:179-185
    DOI: 10.1016/j.physa.2018.04.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118305028
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    3. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    4. Yang, Guangfei & Sun, Tao & Wang, Jianliang & Li, Xianneng, 2015. "Modeling the nexus between carbon dioxide emissions and economic growth," Energy Policy, Elsevier, vol. 86(C), pages 104-117.
    5. Burnett, J. Wesley & Bergstrom, John C. & Wetzstein, Michael E., 2013. "Carbon dioxide emissions and economic growth in the U.S," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1014-1028.
    6. Aliprandi, F. & Stoppato, A. & Mirandola, A., 2016. "Estimating CO2 emissions reduction from renewable energy use in Italy," Renewable Energy, Elsevier, vol. 96(PA), pages 220-232.
    7. Kuan-Min Wang, 2013. "The relationship between carbon dioxide emissions and economic growth: quantile panel-type analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1337-1366, April.
    8. Deviren, Seyma Akkaya & Deviren, Bayram, 2016. "The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 429-439.
    9. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    10. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    11. Kapica, Jacek & Pawlak, Halina & Ścibisz, Marek, 2015. "Carbon dioxide emission reduction by heating poultry houses from renewable energy sources in Central Europe," Agricultural Systems, Elsevier, vol. 139(C), pages 238-249.
    12. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Carbon dioxide emission, institutional quality, and economic growth: Empirical evidence in Malaysia," Renewable Energy, Elsevier, vol. 68(C), pages 276-281.
    13. Roberts, J. Timmons & Grimes, Peter E., 1997. "Carbon intensity and economic development 1962-1991: A brief exploration of the environmental Kuznets curve," World Development, Elsevier, vol. 25(2), pages 191-198, February.
    14. Long, Xingle & Naminse, Eric Yaw & Du, Jianguo & Zhuang, Jincai, 2015. "Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 680-688.
    15. Labis, Paulino E. & Visande, Rey G. & Pallugna, Reuel C. & Caliao, Nolan D., 2011. "The contribution of renewable distributed generation in mitigating carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4891-4896.
    16. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
    17. Alshehry, Atef Saad & Belloumi, Mounir, 2015. "Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 237-247.
    18. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dong-xiao & Chen, Zi-yue & Yang, Yong-cong & Nie, Pu-yan, 2019. "Green financial policies and capital flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 135-146.
    2. Javed, Aamir & Rapposelli, Agnese & Khan, Feroz & Javed, Asif, 2023. "The impact of green technology innovation, environmental taxes, and renewable energy consumption on ecological footprint in Italy: Fresh evidence from novel dynamic ARDL simulations," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    3. Li-Ming Xue & Shuo Meng & Jia-Xing Wang & Lei Liu & Zhi-Xue Zheng, 2020. "Influential Factors Regarding Carbon Emission Intensity in China: A Spatial Econometric Analysis from a Provincial Perspective," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    4. Le Yang & Zhongqi Liang & Wentao Yao & Hongmin Zhu & Liangen Zeng & Zihan Zhao, 2023. "What Are the Impacts of Urbanisation on Carbon Emissions Efficiency? Evidence from Western China," Land, MDPI, vol. 12(9), pages 1-18, August.
    5. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    6. Cao, Chunyan & Chen, Wei & Aslam, Misbah, 2023. "COP26 perspective of natural resources extraction: Oil and mineral resources perspective of developed economies," Resources Policy, Elsevier, vol. 82(C).
    7. Aziz, Ghazala & Sarwar, Suleman & Waheed, Rida & Khan, Mohd Saeed, 2023. "Significance of hydrogen energy to control the environmental gasses in light of COP26: A case of European Countries," Resources Policy, Elsevier, vol. 80(C).
    8. Ping Cao & Xiaoxiao Li & Yu Cheng & Han Shen, 2022. "Temporal-Spatial Evolution and Driving Factors of Global Carbon Emission Efficiency," IJERPH, MDPI, vol. 19(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyfettin Erdo an & Durmu a r Y ld r m & Ayfer Gedikli, 2019. "Investigation of Causality Analysis between Economic Growth and CO2 Emissions: The Case of BRICS T Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 430-438.
    2. Amjad Ali & Marc Audi & Yannick Roussel, 2021. "Natural Resources Depletion, Renewable Energy Consumption and Environmental Degradation: A Comparative Analysis of Developed and Developing World," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 251-260.
    3. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
    4. Xiangrong Ma & Jianping Ge & Wei Wang, 2017. "The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: a cointegrated vector error correction (VEC) analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1017-1033, June.
    5. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    6. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    7. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    8. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    9. Sencer Atasoy, Burak, 2017. "Testing the environmental Kuznets curve hypothesis across the U.S.: Evidence from panel mean group estimators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 731-747.
    10. Hongze Li & Bingkang Li & Hao Lu, 2017. "Carbon Dioxide Emissions, Economic Growth, and Selected Types of Fossil Energy Consumption in China: Empirical Evidence from 1965 to 2015," Sustainability, MDPI, vol. 9(5), pages 1-14, April.
    11. Ali Raza & Hongguang Sui & Kittisak Jermsittiparsert & Wioletta Żukiewicz-Sobczak & Pawel Sobczak, 2021. "Trade Liberalization and Environmental Performance Index: Mediation Role of Climate Change Performance and Greenfield Investment," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    12. Wenjing Zhang & Hengzhou Xu, 2017. "Exploring the causal relationship between carbon emissions and land urbanization quality in China using a panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1445-1462, August.
    13. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2015. "Energy Consumption, CO2 Emissions, and Economic Growth: A Moral Dilemma," MPRA Paper 67422, University Library of Munich, Germany.
    14. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Energy consumption, CO2 emissions, and economic growth: An ethical dilemma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 808-824.
    15. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    16. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    17. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    18. Gopal Gopakumar & Ritika Jaiswal & Mayank Parashar, 2022. "Analysis of the Existence of Environmental Kuznets Curve: Evidence from India," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 177-187.
    19. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    20. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:179-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.