Advanced Search
MyIDEAS: Login to save this article or follow this journal

A copula–multifractal volatility hedging model for CSI 300 index futures

Contents:

Author Info

  • Wei, Yu
  • Wang, Yudong
  • Huang, Dengshi
Registered author(s):

    Abstract

    In this paper, we propose a new hedging model combining the newly introduced multifractal volatility (MFV) model and the dynamic copula functions. Using high-frequency intraday quotes of the spot Shanghai Stock Exchange Composite Index (SSEC), spot China Securities Index 300 (CSI 300), and CSI 300 index futures, we compare the direct and cross hedging effectiveness of the copula–MFV model with several popular copula–GARCH models. The main empirical results show that the proposed copula–MFV model obtains better hedging effectiveness than the copula–GARCH-type models in general. Furthermore, the hedge operating strategy based MFV hedging model involves fewer transaction costs than those based on the GARCH-type models. The finding of this paper indicates that multifractal analysis may offer a new way of quantitative hedging model design using financial futures.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111004894
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 390 (2011)
    Issue (Month): 23 ()
    Pages: 4260-4272

    as in new window
    Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4260-4272

    Contact details of provider:
    Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    Related research

    Keywords: Econophysics; Multifractal volatility model; Dynamic copula functions; CSI 300 index; Hedging effectiveness;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Ruipeng Liu & T. Di Matteo & Thomas Lux, 2007. "True and Apparent Scaling: The Proximity of the Markov-Switching Multifractal Model to Long-Range Dependence," Papers 0704.1338, arXiv.org.
    2. A. Bershadskii, 1999. "Multifractal critical phenomena in traffic and economic processes," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 11(2), pages 361-364, September.
    3. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, 05.
    4. Choudhry, Taufiq, 2003. "Short-run deviations and optimal hedge ratio: evidence from stock futures," Journal of Multinational Financial Management, Elsevier, vol. 13(2), pages 171-192, April.
    5. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    6. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
    7. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
    8. Laurent Calvet, 2000. "Forecasting Multifractal Volatility," Harvard Institute of Economic Research Working Papers 1902, Harvard - Institute of Economic Research.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    10. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 49-83.
    11. Uritskaya, Olga Y. & Serletis, Apostolos, 2008. "Quantifying multiscale inefficiency in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3109-3117, November.
    12. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    13. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3218-3229.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
    16. Norouzzadeh, P. & Jafari, G.R., 2005. "Application of multifractal measures to Tehran price index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 609-627.
    17. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 13(3), pages 595-599, 02.
    18. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    19. GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," CORE Discussion Papers 2003028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Zoltan Eisler & Janos Kertesz, 2004. "Multifractal model of asset returns with leverage effect," Papers cond-mat/0403767, arXiv.org, revised May 2004.
    21. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    22. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    23. He, Ling-Yun & Chen, Shu-Peng, 2011. "Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 297-308.
    24. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2007. "The Hurst exponent in energy futures prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 325-332.
    25. Laurent E. Calvet & Adlai J. Fisher & Samuel B. Thompson, 2004. "Volatility Comovement: A Multifrequency Approach," NBER Technical Working Papers 0300, National Bureau of Economic Research, Inc.
    26. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    28. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    29. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    30. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    31. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    32. Gu, Rongbao & Chen, Hongtao & Wang, Yudong, 2010. "Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2805-2815.
    33. François Longin, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, 04.
    34. Serletis, Apostolos & Andreadis, Ioannis, 2004. "Random fractal structures in North American energy markets," Energy Economics, Elsevier, vol. 26(3), pages 389-399, May.
    35. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2010. "Cross-correlations between Chinese A-share and B-share markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5468-5478.
    36. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    37. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    38. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    39. Norouzzadeh, P. & Dullaert, W. & Rahmani, B., 2007. "Anti-correlation and multifractal features of Spain electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 333-342.
    40. Dashtian, Hassan & Jafari, G. Reza & Sahimi, Muhammad & Masihi, Mohsen, 2011. "Scaling, multifractality, and long-range correlations in well log data of large-scale porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2096-2111.
    41. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-30, August.
    42. Lai, YiHao & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Optimal dynamic hedging via copula-threshold-GARCH models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2609-2624.
    43. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    44. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    45. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscale behaviour of volatility autocorrelations in a financial market," Economics Letters, Elsevier, vol. 65(3), pages 275-279, December.
    46. Lastrapes, William D, 1989. "Exchange Rate Volatility and U.S. Monetary Policy: An ARCH Application," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 21(1), pages 66-77, February.
    47. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    48. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 817-827.
    49. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    50. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    51. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    52. Moyano, L.G. & de Souza, J. & Duarte Queirós, S.M., 2006. "Multi-fractal structure of traded volume in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(1), pages 118-121.
    53. Figlewski, Stephen, 1984. " Hedging Performance and Basis Risk in Stock Index Futures," Journal of Finance, American Finance Association, vol. 39(3), pages 657-69, July.
    54. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-70, March.
    55. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    56. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chen, Rongda & Li, Cong & Wang, Weijin & Wang, Ze, 2014. "Empirical analysis on future-cash arbitrage risk with portfolio VaR," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 210-216.
    2. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    3. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    4. Zhiyuan Pan & Xianchao Sun, 2014. "Hedging Strategy Using Copula and Nonparametric Methods: Evidence from China Securities Index Futures," International Journal of Economics and Financial Issues, Econjournals, vol. 4(1), pages 107-121.
    5. Hou, Yang & Li, Steven, 2013. "Hedging performance of Chinese stock index futures: An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches," Pacific-Basin Finance Journal, Elsevier, vol. 24(C), pages 109-131.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4260-4272. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.