IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v337y2004i3p565-585.html
   My bibliography  Save this article

Fearless versus fearful speculative financial bubbles

Author

Listed:
  • Andersen, J.V.
  • Sornette, D.

Abstract

Using a recently introduced rational expectation model of bubbles, based on the interplay between stochasticity and positive feedbacks of prices on returns and volatility, we develop a new methodology to test how this model classifies nine time series that have been previously considered as bubbles ending in crashes. The model predicts the existence of two anomalous behaviors occurring simultaneously: (i) super-exponential price growth and (ii) volatility growth, that we refer to as the “fearful singular bubble” regime. Out of the nine time series, we find that five pass our tests and can be characterized as “fearful singular bubbles”. The four other cases are the information technology Nasdaq bubble and three bubbles of the Hang Seng index ending in crashes in 1987, 1994 and 1997. According to our analysis, these four bubbles have developed with essentially no significant increase of their volatility. This paper thus proposes that speculative bubbles ending in crashes form two groups hitherto unrecognized, namely those accompanied by increasing volatility (reflecting increasing risk perception) and those without change of volatility (reflecting an absence of risk perception).

Suggested Citation

  • Andersen, J.V. & Sornette, D., 2004. "Fearless versus fearful speculative financial bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 565-585.
  • Handle: RePEc:eee:phsmap:v:337:y:2004:i:3:p:565-585
    DOI: 10.1016/j.physa.2004.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104001359
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    2. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    3. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    4. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    5. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    6. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    7. Jeremy J. Siegel, 2003. "What Is an Asset Price Bubble? An Operational Definition," European Financial Management, European Financial Management Association, vol. 9(1), pages 11-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Lin & Didier Sornette, 2023. "The inverse Cox-Ingersoll-Ross process for parsimonious financial price modeling," Papers 2302.11423, arXiv.org, revised Jun 2023.
    2. Robert A. Jarrow, 2015. "Asset Price Bubbles," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 201-218, December.
    3. Fry, J. M., 2010. "Gaussian and non-Gaussian models for financial bubbles via econophysics," MPRA Paper 27307, University Library of Munich, Germany.
    4. Kaizoji, Taisei & Sornette, Didier, 2008. "Market Bubbles and Chrashes," MPRA Paper 15204, University Library of Munich, Germany.
    5. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    6. Didier Sornette & Peter Cauwels & Georgi Smilyanov, 2017. "Can We Use Volatility to Diagnose Financial Bubbles? Lessons from 40 Historical Bubbles," Swiss Finance Institute Research Paper Series 17-27, Swiss Finance Institute.
    7. Fry, J. M., 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," MPRA Paper 16027, University Library of Munich, Germany.
    8. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    9. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Shocks in financial markets, price expectation, and damped harmonic oscillators," Papers 1103.1992, arXiv.org, revised Sep 2011.
    10. Li Lin & Didier Sornette, 2018. "“Speculative Influence Network” during financial bubbles: application to Chinese stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 385-431, July.
    11. D. Sornette, 2008. "Nurturing breakthroughs: lessons from complexity theory," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(2), pages 165-181, December.
    12. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    13. Ravi Kashyap, 2019. "Concepts, Components and Collections of Trading Strategies and Market Color," Papers 1910.02144, arXiv.org, revised Jan 2020.
    14. Fry, J. M., 2010. "Bubbles and crashes in finance: A phase transition from random to deterministic behaviour in prices," MPRA Paper 24778, University Library of Munich, Germany.
    15. V. I. Yukalov & D. Sornette & E. P. Yukalova, 2007. "Nonlinear Dynamical Model of Regime Switching Between Conventions and Business Cycles," Papers nlin/0701014, arXiv.org.
    16. Grosjean, Nicolas & Huillet, Thierry, 2016. "Deterministic versus stochastic aspects of superexponential population growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 27-37.
    17. Yukalov, V.I. & Sornette, D. & Yukalova, E.P., 2009. "Nonlinear dynamical model of regime switching between conventions and business cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 206-230, May.
    18. Li Lin & Didier Sornette, 2009. "Diagnostics of Rational Expectation Financial Bubbles with Stochastic Mean-Reverting Termination Times," Papers 0911.1921, arXiv.org.
    19. Fry, J. M., 2009. "Bubbles and contagion in English house prices," MPRA Paper 17687, University Library of Munich, Germany.
    20. Didier Sornette & Ryan Woodard, 2009. "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Papers 0905.0220, arXiv.org.
    21. Diego Ardila & Dorsa Sanadgol & Peter Cauwels & Didier Sornette, 2017. "Identification and critical time forecasting of real estate bubbles in the USA," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 613-631, April.
    22. Rodríguez-Aguilar, Román & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter," MPRA Paper 59046, University Library of Munich, Germany.
    23. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    24. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    25. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for rational bubbles in banking indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 365-376.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. V. Andersen & D Sornette, 2003. "Fearless versus Fearful Speculative Financial Bubbles," Papers cond-mat/0311089, arXiv.org.
    2. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    3. C. Vladimir Rodríguez-Caballero & Mauricio Villanueva-Domínguez, 2022. "Predicting cryptocurrency crash dates," Empirical Economics, Springer, vol. 63(6), pages 2855-2873, December.
    4. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    5. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    7. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    8. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
    9. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    10. Sornette, Didier & Zhou, Wei-Xing, 2006. "Predictability of large future changes in major financial indices," International Journal of Forecasting, Elsevier, vol. 22(1), pages 153-168.
    11. Zhou, Wei-Xing & Sornette, Didier, 2004. "Antibubble and prediction of China's stock market and real-estate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 243-268.
    12. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    13. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
    14. Zhou, Wei-Xing & Sornette, Didier, 2004. "Causal slaving of the US treasury bond yield antibubble by the stock market antibubble of August 2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 586-608.
    15. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    17. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    18. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    19. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Shocks in financial markets, price expectation, and damped harmonic oscillators," Papers 1103.1992, arXiv.org, revised Sep 2011.
    20. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:337:y:2004:i:3:p:565-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.