IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v70y2021ics0301420720309351.html
   My bibliography  Save this article

What drives material use in the EU? Evidence from club convergence and decomposition analysis on domestic material consumption and material footprint

Author

Listed:
  • Karakaya, Etem
  • Sarı, Erkam
  • Alataş, Sedat

Abstract

This study investigates the main driving forces behind material use of the EU in the case of heterogeneity between member states with paying special attention to the comparison of domestic material consumption (DMC) with material footprint (MF). To this end, we first classify countries into several clubs based on time-varying behavior of two material use indicators and analyse the degree of heterogeneity between the EU countries. Secondly, we identify main driving forces behind DMC and MF changes using the logarithmic mean Divisia index (LMDI) decomposition analysis and explore the specific characteristics of material use for each club. The empirical results suggest that (i) the EU member states do not converge to a unique steady state level and there are multiple equilibria for both indicators. However, the number of clubs for per capita DMC is greater than per capita MF; (ii) the increase in material use due to the income effect is the largest, followed by the population effect. While the structural effect has an inhibiting effect for both DMC and MF, the material intensity effect differs depending on the indicator used; (iii) the magnitude of effects significantly varies between clubs. Our findings indicate the requirement of consumption based climate mitigation tools. In this regard, carbon border adjustment and/or consumption charges on material use could be effective market based instruments.

Suggested Citation

  • Karakaya, Etem & Sarı, Erkam & Alataş, Sedat, 2021. "What drives material use in the EU? Evidence from club convergence and decomposition analysis on domestic material consumption and material footprint," Resources Policy, Elsevier, vol. 70(C).
  • Handle: RePEc:eee:jrpoli:v:70:y:2021:i:c:s0301420720309351
    DOI: 10.1016/j.resourpol.2020.101904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420720309351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hooi Hooi Lean & Vinod Mishra & Russell Smyth, 2016. "Conditional convergence in US disaggregated petroleum consumption at the sector level," Applied Economics, Taylor & Francis Journals, vol. 48(32), pages 3049-3061, July.
    2. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    3. Ulucak, Recep & Koçak, Emrah & Erdoğan, Seyfettin & Kassouri, Yacouba, 2020. "Investigating the non-linear effects of globalization on material consumption in the EU countries: Evidence from PSTR estimation," Resources Policy, Elsevier, vol. 67(C).
    4. Paul Johnson & Chris Papageorgiou, 2020. "What Remains of Cross-Country Convergence?," Journal of Economic Literature, American Economic Association, vol. 58(1), pages 129-175, March.
    5. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185.
    6. Fabio Canova, 2004. "Testing for Convergence Clubs in Income Per Capita: A Predictive Density Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 49-77, February.
    7. Marco Barassi & Matthew Cole & Robert Elliott, 2011. "The Stochastic Convergence of CO 2 Emissions: A Long Memory Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 367-385, July.
    8. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    9. Jonathan R. W. Temple, 1998. "Robustness tests of the augmented Solow model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 361-375.
    10. Pothen, Frank & Welsch, Heinz, 2019. "Economic development and material use. Evidence from international panel data," World Development, Elsevier, vol. 115(C), pages 107-119.
    11. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    12. Caselli, Francesco & Esquivel, Gerardo & Lefort, Fernando, 1996. "Reopening the Convergence Debate: A New Look at Cross-Country Growth Empirics," Journal of Economic Growth, Springer, vol. 1(3), pages 363-389, September.
    13. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    14. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    15. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    16. Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Club Convergence in Carbon Dioxide Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(1), pages 47-70, September.
    17. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    18. Ekaterini Panopoulou & Theologos Pantelidis, 2012. "Convergence in per capita health expenditures and health outcomes in the OECD countries," Applied Economics, Taylor & Francis Journals, vol. 44(30), pages 3909-3920, October.
    19. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    20. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    21. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    22. Nicholas Apergis & Christina Christou, 2016. "Energy productivity convergence: new evidence from club converging," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 142-145, February.
    23. Larissa Talmon-Gros, 2014. "Development Patterns of Material Productivity," Contributions to Economics, Springer, edition 127, number 978-3-319-02538-4, October.
    24. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    25. Karakaya, Etem & Alataş, Sedat & Yılmaz, Burcu, 2019. "Replication of Strazicich and List (2003): Are CO2 emission levels converging among industrial countries?," Energy Economics, Elsevier, vol. 82(C), pages 135-138.
    26. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    27. Paolo Agnolucci & Florian Flachenecker & Magnus Söderberg, 2017. "The causal impact of economic growth on material use in Europe," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 6(4), pages 415-432, October.
    28. Kerui Du, 2017. "Econometric convergence test and club clustering using Stata," Stata Journal, StataCorp LP, vol. 17(4), pages 882-900, December.
    29. Winford H. Masanjala & Chris Papageorgiou, 2004. "The Solow model with CES technology: nonlinearities and parameter heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 171-201.
    30. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    31. Pothen, Frank & Schymura, Michael, 2015. "Bigger cakes with fewer ingredients? A comparison of material use of the world economy," Ecological Economics, Elsevier, vol. 109(C), pages 109-121.
    32. Stefan Giljum & Hanspeter Wieland & Stephan Lutter & Martin Bruckner & Richard Wood & Arnold Tukker & Konstantin Stadler, 2016. "Identifying priority areas for European resource policies: a MRIO-based material footprint assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-24, December.
    33. Ali Acaravci & Sinan Erdogan, 2016. "The Convergence Behavior of CO2 Emissions in Seven Regions under Multiple Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 575-580.
    34. Schaffartzik, Anke & Duro, Juan Antonio & Krausmann, Fridolin, 2019. "Global appropriation of resources causes high international material inequality – Growth is not the solution," Ecological Economics, Elsevier, vol. 163(C), pages 9-19.
    35. Markandya, Anil & Pedroso-Galinato, Suzette & Streimikiene, Dalia, 2006. "Energy intensity in transition economies: Is there convergence towards the EU average?," Energy Economics, Elsevier, vol. 28(1), pages 121-145, January.
    36. Nazrul Islam, 1995. "Growth Empirics: A Panel Data Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 1127-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    2. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    3. Sun, Yanlei & Wang, Siyao & Xing, Zhanlei, 2023. "Do international trade diversification, intellectual capital, and renewable energy transition ensure effective natural resources management in BRICST region," Resources Policy, Elsevier, vol. 81(C).
    4. Kasmaeeyazdi, Sara & Abdolmaleki, Mehdi & Ibrahim, Elsy & Jiang, Jingyi & Marzan, Ignacio & Rodríguez, Irene Benito, 2021. "Copernicus data to boost raw material source management: Illustrations from the RawMatCop programme," Resources Policy, Elsevier, vol. 74(C).
    5. Qiao, Hongqiang & Kang, Yongwei & Yan, Jixuan & Zhang, Jia & Zheng, Zhiqin & Liang, Qiaoxia, 2023. "What role does trade expansion play in the natural resource sustainability of highly resource-consuming countries? Testing Moderating Role of Exports and Innovation," Resources Policy, Elsevier, vol. 82(C).
    6. Erkam Sari & Hakan Hotunluoglu, 2021. "Government Size and Openness: Insights Basedon Country Classifications," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 7(1), pages 1-16, June.
    7. Shuai Zhang & Dajian Zhu & Lilian Li, 2023. "Urbanization, Human Inequality, and Material Consumption," IJERPH, MDPI, vol. 20(5), pages 1-18, March.
    8. Lin, Shu & Razzaq, Asif & Yi, Kefu, 2023. "Heterogenous influence of productive capacities pillars and natural resources on ecological sustainability in developing Belt and Road host countries," Resources Policy, Elsevier, vol. 85(PA).
    9. Lingfu Kong & Emrah Sofuoğlu & Balogun Daud Ishola & Shujaat Abbas & Qingran Guo & Khurshid Khudoykulov, 2024. "Sustainable development through structural transformation: a pathway to economic, social, and environmental progress," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-34, April.
    10. Geng, Yaxin & Rao, Pinyang & Sharif, Arshian, 2022. "Natural resource management and ecological sustainability: Dynamic role of social disparity and human development in G10 Economies," Resources Policy, Elsevier, vol. 79(C).
    11. Aldieri, Luigi & Makkonen, Teemu & Vinci, Concetto Paolo, 2022. "Do research and development and environmental knowledge spillovers facilitate meeting sustainable development goals for resource efficiency?," Resources Policy, Elsevier, vol. 76(C).
    12. Ma, Yubo & Fan, Yufeng & Razzaq, Asif, 2023. "Influence of technical efficiency and globalization on sustainable resources management: Evidence from South Asian countries," Resources Policy, Elsevier, vol. 81(C).
    13. Schaffartzik, Anke & Duro, Juan Antonio, 2022. "‘Dematerialization’ in times of economic crisis: A regional analysis of the Spanish economy in material and monetary terms," Resources Policy, Elsevier, vol. 78(C).
    14. Kerner, Philip & Wendler, Tobias, 2022. "Convergence in resource productivity," World Development, Elsevier, vol. 158(C).
    15. Sun, Yunpeng & Ajaz, Tahseen & Razzaq, Asif, 2022. "How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices," Resources Policy, Elsevier, vol. 79(C).
    16. abid, Nabila & Ceci, Federica & Razzaq, Asif, 2023. "Inclusivity of information and communication technology in ecological governance for sustainable resources management in G10 countries," Resources Policy, Elsevier, vol. 81(C).
    17. Jin, Guangzhu & Huang, Zhenhui, 2023. "Asymmetric influence of China's outward FDI and exports on trade-adjusted resources footprint in belt and road node countries: Moderating role of governance," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedat Alataş & Erkam Sarı, 2021. "An Empirical Investigation on Regional Disparities in Public Expenditures: Province Level Evidence from Turkey," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(1), pages 217-240, November.
    2. Burnett, J. Wesley, 2016. "Club convergence and clustering of U.S. energy-related CO2 emissions," Resource and Energy Economics, Elsevier, vol. 46(C), pages 62-84.
    3. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    4. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    6. Cialani, Catia & Mortazavi, Reza, 2021. "Sectoral analysis of club convergence in EU countries’ CO2 emissions," Energy, Elsevier, vol. 235(C).
    7. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    8. Yan, Zheming & Du, Keru & Yang, Zhiming & Deng, Min, 2017. "Convergence or divergence? Understanding the global development trend of low-carbon technologies," Energy Policy, Elsevier, vol. 109(C), pages 499-509.
    9. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    10. Joseph Nyangon & John Byrne & Job Taminiau, 2017. "An assessment of price convergence between natural gas and solar photovoltaic in the U.S. electricity market," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    11. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    12. Bolin Yu & Debin Fang & Andrew N. Kleit & Kun Xiao, 2022. "Exploring the driving mechanism and the evolution of the low‐carbon economy transition: Lessons from OECD developed countries," The World Economy, Wiley Blackwell, vol. 45(9), pages 2766-2795, September.
    13. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2010. "Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?," Energy Economics, Elsevier, vol. 32(6), pages 1364-1373, November.
    14. Mariam Camarero & Juana Castillo-Giménez & Andrés Picazo-Tadeo & Cecilio Tamarit, 2014. "Is eco-efficiency in greenhouse gas emissions converging among European Union countries?," Empirical Economics, Springer, vol. 47(1), pages 143-168, August.
    15. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    16. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    17. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    18. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Mariam Camarero & Inmaculada Martínez-Zarzoso, 2017. "Stochastic and club convergence of sectoral CO2 emissions in the European Union," Working Papers 2017/01, Economics Department, Universitat Jaume I, Castellón (Spain).
    19. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    20. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:70:y:2021:i:c:s0301420720309351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.