IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v93y2019icp85-100.html
   My bibliography  Save this article

Groundwater depletion in India: Social losses from costly well deepening

Author

Listed:
  • Sayre, Susan Stratton
  • Taraz, Vis

Abstract

We develop a dynamic groundwater model that incorporates both groundwater pumping and investment in deeper wells and apply the model to the arid, alluvial aquifer region of Northern India that is experiencing rapid depletion. We compute the potential benefits of regulating groundwater use by comparing the net benefits of groundwater under optimal management to the net benefits under a common pool regime with two different cost structures: one with flat electricity tariffs, which are widespread in India, and a second with full marginal cost electricity pricing. Using numerical simulation, we find that the opportunity to invest in deeper wells significantly exacerbates the common pool problem and suggests the potential for large benefits (66% of common pool benefits) from optimally managing groundwater use or new drilling. Flat tariffs exacerbate the problem, but large gains (almost 23%) remain even if farms are charged the full marginal cost of electricity.

Suggested Citation

  • Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
  • Handle: RePEc:eee:jeeman:v:93:y:2019:i:c:p:85-100
    DOI: 10.1016/j.jeem.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069616304442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phoebe Koundouri & Christina Christou, 2006. "Dynamic adaptation to resource scarcity and backstop availability: theory and application to groundwater ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 227-245, June.
    2. C.-Y. Cynthia Lin Lawell, 2016. "The Management of Groundwater: Irrigation Efficiency, Policy, Institutions, and Externalities," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 247-259, October.
    3. Squires, Dale & Vestergaard, Niels, 2018. "Rethinking the commons problem: Technical change, knowledge spillovers, and social learning," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 1-25.
    4. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    5. Sheetal Sekhri, 2013. "Missing Water: Agricultural Stress and Adaptation Strategies in Response to Groundwater Depletion in India," Virginia Economics Online Papers 406, University of Virginia, Department of Economics.
    6. Siwa Msangi & Sarah Ann Cline, 2016. "Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    7. Liu, Zhuo & Suter, Jordan F. & Messer, Kent D. & Duke, Joshua M. & Michael, Holly A., 2014. "Strategic entry and externalities in groundwater resources: Evidence from the lab," Resource and Energy Economics, Elsevier, vol. 38(C), pages 181-197.
    8. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.
    9. Taraz, Vis, 2017. "Adaptation to climate change: historical evidence from the Indian monsoon," Environment and Development Economics, Cambridge University Press, vol. 22(5), pages 517-545, October.
    10. Manning, Dale T. & Suter, Jordan, 2016. "Well Capacity and the Gains from Coordination in a Spatially Explicit Aquifer," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236206, Agricultural and Applied Economics Association.
    11. Rodney B. W. Smith & Harumi Nelson & Terry L. Roe, 2015. "Groundwater and Economic Dynamics, Shadow Rents and Shadow Prices: The Punjab," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 1-31.
    12. Hrozencik, Robert Aaron & Manning, Dale T., 2016. "Groundwater Management Policy Evaluation with a Spatial-Dynamic Hydro-Economic Modelling Framework," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236116, Agricultural and Applied Economics Association.
    13. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    14. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    15. Sheetal Sekhri, 2014. "Wells, Water, and Welfare: The Impact of Access to Groundwater on Rural Poverty and Conflict," American Economic Journal: Applied Economics, American Economic Association, vol. 6(3), pages 76-102, July.
    16. Sekhri, Sheetal, 2013. "Sustaining Groundwater: Role of Policy Reforms in Promoting Conservation in India," India Policy Forum, National Council of Applied Economic Research, vol. 9(1), pages 149-187.
    17. Saak, Alexander E. & Peterson, Jeffrey M., 2007. "Groundwater use under incomplete information," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 214-228, September.
    18. Nathaniel H Merrill & Todd Guilfoos, 2018. "Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 220-238.
    19. Ram Fishman, 2018. "Groundwater depletion limits the scope for adaptation to increased rainfall variability in India," Climatic Change, Springer, vol. 147(1), pages 195-209, March.
    20. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
    21. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    22. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    23. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    24. Sheetal Sekhri, 2011. "Public Provision and Protection of Natural Resources: Groundwater Irrigation in Rural India," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 29-55, October.
    25. Roopal Suhag, 2016. "Overview of Ground Water in India," Working Papers id:9504, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agarwala, Meghna & Bhattacharjee, Shampa & Dasgupta, Aparajita, 2022. "Unintended consequences of Indian groundwater preservation law on crop residue burning," Economics Letters, Elsevier, vol. 214(C).
    2. Théo Benonnier & Katrin Millock & Vis Taraz, 2019. "Climate change, migration, and irrigation," Working Papers halshs-02107098, HAL.
    3. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    4. Sugiyono & Bart J. Dewancker, 2020. "Study on the Domestic Water Utilization in Kota Metro, Lampung Province, Indonesia: Exploring Opportunities to Apply the Circular Economic Concepts in the Domestic Water Sector," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    5. Foster, Timothy & Adhikari, Roshan & Adhikari, Subash & Justice, Scott & Tiwari, Baburam & Urfels, Anton & Krupnik, Timothy J., 2021. "Improving pumpset selection to support intensification of groundwater irrigation in the Eastern Indo-Gangetic Plains," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Ali, Saif & Arora, Gaurav, 2021. "Well-level Missingness Mechanisms in Administrative Groundwater Monitoring Data for Uttar Pradesh (UP), India, 2009-2018," 2021 Annual Meeting, August 1-3, Austin, Texas 314038, Agricultural and Applied Economics Association.
    7. Archisman Mitra & Soumya Balasubramanya & Roy Brouwer, 2023. "Can cash incentives modify groundwater pumping behaviors? Evidence from an experiment in Punjab," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 861-887, May.
    8. Théo Benonnier & Katrin Millock & Vis Taraz, 2022. "Long-term migration trends and rising temperatures: the role of irrigation," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 11(3), pages 307-330, July.
    9. Vasilaky, Kathryn & Harou, Aurélie & Alfredo, Katherine & Kapur, Ishita, 2023. "What works for water conservation? Evidence from a field experiment in India," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    10. Naresh Devineni & Shama Perveen & Upmanu Lall, 2022. "Solving groundwater depletion in India while achieving food security," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Ghadir Asadi & Mohammad H. Mostafavi-Dehzooei, 2022. "The Role of Learning in Adaptation to Technology: The Case of Groundwater Extraction," Sustainability, MDPI, vol. 14(12), pages 1-37, June.
    12. Rouhi Rad, Mani & Brozović, Nicholas & Foster, Timothy & Mieno, Taro, 2020. "Effects of instantaneous groundwater availability on irrigated agriculture and implications for aquifer management," Resource and Energy Economics, Elsevier, vol. 59(C).
    13. Mitra, Archisman & Balasubramanya, Soumya & Bouwer, Roy, 2021. "Can electricity rebates modify groundwater pumping behaviours? Evidence from a pilot study in Punjab, India," 2021 Annual Meeting, August 1-3, Austin, Texas 313871, Agricultural and Applied Economics Association.
    14. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    15. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric C. Edwards & Todd Guilfoos, 2021. "The Economics of Groundwater Governance Institutions across the Globe," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1571-1594, December.
    2. Quintana Ashwell, Nicolas E. & Peterson, Jeffrey M. & Hendricks, Nathan P., 2018. "Optimal groundwater management under climate change and technical progress," Resource and Energy Economics, Elsevier, vol. 51(C), pages 67-83.
    3. Nathaniel H Merrill & Todd Guilfoos, 2018. "Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 220-238.
    4. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia, 2021. "Property rights and groundwater management in the High Plains Aquifer," Resource and Energy Economics, Elsevier, vol. 63(C).
    5. Rouhi Rad, Mani & Brozović, Nicholas & Foster, Timothy & Mieno, Taro, 2020. "Effects of instantaneous groundwater availability on irrigated agriculture and implications for aquifer management," Resource and Energy Economics, Elsevier, vol. 59(C).
    6. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    7. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    8. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    9. Smith, Steven M., 2018. "Economic incentives and conservation: Crowding-in social norms in a groundwater commons," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 147-174.
    10. Eric C. Edwards, 2016. "What Lies Beneath? Aquifer Heterogeneity and the Economics of Groundwater Management," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 453-491.
    11. Faye, Amy & Msangi, Siwa, 2018. "Rainfall variability and groundwater availability for irrigation in Sub-Saharan Africa: evidence from the Niayes region of Senegal," MPRA Paper 92388, University Library of Munich, Germany.
    12. Liu, Zhuo & Suter, Jordan F. & Messer, Kent D. & Duke, Joshua M. & Michael, Holly A., 2014. "Strategic entry and externalities in groundwater resources: Evidence from the lab," Resource and Energy Economics, Elsevier, vol. 38(C), pages 181-197.
    13. Reinelt, Peter, 2020. "Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer," Resource and Energy Economics, Elsevier, vol. 59(C).
    14. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    15. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).
    16. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    17. Ghadir Asadi & Mohammad H. Mostafavi-Dehzooei, 2022. "The Role of Learning in Adaptation to Technology: The Case of Groundwater Extraction," Sustainability, MDPI, vol. 14(12), pages 1-37, June.
    18. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    19. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    20. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:93:y:2019:i:c:p:85-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.