IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v32y2010i2p154-164.html
   My bibliography  Save this article

On the spatial nature of the groundwater pumping externality

Author

Listed:
  • Brozovic, Nicholas
  • Sunding, David L.
  • Zilberman, David

Abstract

Most existing economic analyses of optimal groundwater management use single-cell aquifer models, which assume that an aquifer responds uniformly and instantly to groundwater pumping. In this paper, we develop an economic model of groundwater management that explicitly incorporates spatial dynamic groundwater flow equations. Calibration of our model to published economic studies of specific aquifers demonstrates that existing studies generally incorrectly estimate the magnitude of the groundwater pumping externality relative to spatially explicit models. In particular, for large aquifers with surface areas of thousands of square miles, the marginal pumping externality predicted by single-cell models may be orders of magnitude less than that predicted by a spatially explicit model, even at large distances from a pumping well. Conversely, for small aquifers with areas of a few hundred square miles or less, single-cell models reasonably approximate the pumping externality. Application of single-cell models to inappropriate settings may result in misleading policy implications due to understatement of the magnitude and spatial nature of the groundwater externality.

Suggested Citation

  • Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
  • Handle: RePEc:eee:resene:v:32:y:2010:i:2:p:154-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928-7655(09)00071-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karp, Larry, 1992. "Social Welfare in a Common Property Oligopoly," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(2), pages 353-372, May.
    2. Rubio, Santiago J. & Casino, Begona, 2001. "Competitive versus efficient extraction of a common property resource: The groundwater case," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1117-1137, August.
    3. Eli Feinerman & Keith C. Knapp, 1983. "Benefits from Groundwater Management: Magnitude, Sensitivity, and Distribution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 703-710.
    4. Kim, C. S. & Moore, Michael R. & Hanchar, John J. & Nieswiadomy, Michael, 1989. "A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 66-82, July.
    5. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.
    6. Worthington, Virginia E. & Burt, Oscar R. & Brustkern, Richard L., 1985. "Optimal management of a confined groundwater system," Journal of Environmental Economics and Management, Elsevier, vol. 12(3), pages 229-245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    2. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.
    3. Liu, Zhuo & Suter, Jordan F. & Messer, Kent D. & Duke, Joshua M. & Michael, Holly A., 2014. "Strategic entry and externalities in groundwater resources: Evidence from the lab," Resource and Energy Economics, Elsevier, vol. 38(C), pages 181-197.
    4. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.
    5. Marta Biancardi & Gianluca Iannucci & Giovanni Villani, 2023. "Groundwater management and illegality in a differential-evolutionary framework," Computational Management Science, Springer, vol. 20(1), pages 1-17, December.
    6. Quintana Ashwell, Nicolas E. & Peterson, Jeffrey M. & Hendricks, Nathan P., 2018. "Optimal groundwater management under climate change and technical progress," Resource and Energy Economics, Elsevier, vol. 51(C), pages 67-83.
    7. Knapp, Keith C. & Baerenklau, Kenneth A., 2006. "Ground Water Quantity and Quality Management: Agricultural Production and Aquifer Salinization over Long Time Scales," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-26, December.
    8. Laukkanen, Marita & Koundouri, Phoebe, 2006. "Competition versus coopertion in groundwater extraction: A stochastic framework with heteregoneous agents," MPRA Paper 41910, University Library of Munich, Germany.
    9. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).
    10. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    11. Manning, Dale T. & Suter, Jordan, 2016. "Well Capacity and the Gains from Coordination in a Spatially Explicit Aquifer," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236206, Agricultural and Applied Economics Association.
    12. Phoebe Koundouri, 2003. "Potential for groundwater management: Gisser-Sanchez effect reconsidered," DEOS Working Papers 0307, Athens University of Economics and Business.
    13. Glenn D. Schaible & C. S. Kim & Marcel P. Aillery, 2010. "Dynamic Adjustment of Irrigation Technology/Water Management in Western U.S. Agriculture: Toward a Sustainable Future," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 433-461, December.
    14. Kiran Krishnamurthy, Chandra, 2012. "Optimal Management of Groundwater under Uncertainty: A Unified Approach," CERE Working Papers 2012:19, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    15. Rubio, Santiago J. & Casino, Begona, 2001. "Competitive versus efficient extraction of a common property resource: The groundwater case," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1117-1137, August.
    16. Provencher, Bill, 1992. "A Private Property Rights Regime to Replenish a Groundwater Aquifer," Staff Papers 200553, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    17. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    18. Hubert Stahn & Agnès Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," AMSE Working Papers 1452, Aix-Marseille School of Economics, France.
    19. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    20. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:32:y:2010:i:2:p:154-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.