IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v59y2020ics0928765518304287.html
   My bibliography  Save this article

Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer

Author

Listed:
  • Reinelt, Peter

Abstract

This paper analytically develops the economic theory of seawater intrusion in confined aquifers and, in the process, creates generally applicable solution methods for illuminating steady-state spatial externality relationships for other spatial-dynamic diffusion resource management issues. By linking a confined aquifer and its unconfined recharge region with a dynamic boundary condition neglected in the economics literature, we introduce the physical realities that generate spatial externalities in all renewable confined aquifers. We derive spatial-dynamic first-order conditions for optimal extraction and characterize the policy relevant spatial-dynamic pumping cost and seawater intrusion cost externalities with hydrological assumptions appropriate to the different dynamic timescales of system components and the focus on seawater intrusion. For confined aquifers, we prove the marginal seawater intrusion cost externality decreases linearly in distance from the coast. Moreover, we demonstrate that the marginal seawater intrusion cost externality generally exceeds marginal pumping costs near the coast, implying substantial divergence between optimal and common property extraction near the coast, and significant divergence may extend to the inland aquifer boundary depending on both the magnitude and shape of the revenue function relative to extraction costs and aquifer parameters.

Suggested Citation

  • Reinelt, Peter, 2020. "Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer," Resource and Energy Economics, Elsevier, vol. 59(C).
  • Handle: RePEc:eee:resene:v:59:y:2020:i:c:s0928765518304287
    DOI: 10.1016/j.reseneeco.2019.101117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765518304287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2019.101117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Wilen, 2007. "Economics of Spatial-Dynamic Processes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1134-1144.
    2. Moreaux, Michel & Reynaud, Arnaud, 2006. "Urban freshwater needs and spatial cost externalities for coastal aquifers: A theoretical approach," Regional Science and Urban Economics, Elsevier, vol. 36(2), pages 163-186, March.
    3. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    4. Tsur Yacov & Zemel Amos, 1995. "Uncertainty and Irreversibility in Groundwater Resource Management," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 149-161, September.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    6. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    8. Worthington, Virginia E. & Burt, Oscar R. & Brustkern, Richard L., 1985. "Optimal management of a confined groundwater system," Journal of Environmental Economics and Management, Elsevier, vol. 12(3), pages 229-245, September.
    9. Knapp, Keith C. & Baerenklau, Kenneth A., 2006. "Ground Water Quantity and Quality Management: Agricultural Production and Aquifer Salinization over Long Time Scales," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-26, December.
    10. Green, Gareth P. & Sunding, David L., 2000. "Designing environmental regulations with empirical microparameter distributions: the case of seawater intrusion," Resource and Energy Economics, Elsevier, vol. 22(1), pages 63-78, January.
    11. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.
    12. Gisser, Micha, 1983. "Groundwater: Focusing on the Real Issue," Journal of Political Economy, University of Chicago Press, vol. 91(6), pages 1001-1027, December.
    13. Jay E. Noel & B. Delworth Gardner & Charles V. Moore, 1980. "Optimal Regional Conjunctive Water Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 489-498.
    14. Rubio, Santiago J. & Casino, Begona, 2001. "Competitive versus efficient extraction of a common property resource: The groundwater case," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1117-1137, August.
    15. Basharat A. Pitafi & James A. Roumasset, 2009. "Pareto-Improving Water Management over Space and Time: The Honolulu Case," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 138-153.
    16. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    17. Bill Provencher & Oscar Burt, 1994. "A Private Property Rights Regime for the Commons: The Case for Groundwater," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 875-888.
    18. Saak, Alexander E. & Peterson, Jeffrey M., 2007. "Groundwater use under incomplete information," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 214-228, September.
    19. Nathaniel H Merrill & Todd Guilfoos, 2018. "Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 220-238.
    20. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    21. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    22. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
    23. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    24. Oscar R. Burt, 1964. "Optimal Resource Use Over Time with an Application to Ground Water," Management Science, INFORMS, vol. 11(1), pages 80-93, September.
    25. Kuwayama, Yusuke & Brozović, Nicholas, 2013. "The regulation of a spatially heterogeneous externality: Tradable groundwater permits to protect streams," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 364-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoci, Angelo & Iannucci, Gianluca & Rocchi, Benedetto & Ticci, Elisa, 2023. "The land allocation game: Externalities and evolutionary competition," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 124-133.
    2. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    3. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," AMSE Working Papers 2144, Aix-Marseille School of Economics, France.
    4. Athanasios Tsiarapas & Zisis Mallios, 2023. "Estimating the long-term impact of market power on the welfare gains from groundwater markets," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(3), pages 377-406, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    2. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    3. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    4. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    5. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.
    6. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    7. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    8. Eric C. Edwards & Todd Guilfoos, 2021. "The Economics of Groundwater Governance Institutions across the Globe," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1571-1594, December.
    9. repec:hae:wpaper:2012-5 is not listed on IDEAS
    10. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    11. Kiran Krishnamurthy, Chandra, 2012. "Optimal Management of Groundwater under Uncertainty: A Unified Approach," CERE Working Papers 2012:19, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    12. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.
    13. Godwin Kwabla Ekpe & Anna A. Klis, 2023. "Spillover Effects in Irrigated Agriculture from the Groundwater Commons," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(3), pages 469-507, November.
    14. Nasim, Sanval & Helfand, Steven & Dinar, Ariel, 2020. "Groundwater management under heterogeneous land tenure arrangements," Resource and Energy Economics, Elsevier, vol. 62(C).
    15. Phoebe Koundouri, 2003. "Potential for groundwater management: Gisser-Sanchez effect reconsidered," DEOS Working Papers 0307, Athens University of Economics and Business.
    16. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2019. "Spatial Groundwater Management: A Dynamic Game Framework and Application to California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-34, January.
    17. Peterson, Jeffrey M. & Saak, Alexander E., 2013. "Spatial externalities in aquifers with varying thickness: Theory and numerical results for the Ogallala aquifer," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150553, Agricultural and Applied Economics Association.
    18. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia, 2021. "Property rights and groundwater management in the High Plains Aquifer," Resource and Energy Economics, Elsevier, vol. 63(C).
    19. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    20. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    21. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.

    More about this item

    Keywords

    Seawater intrusion; Spatial-dynamic externality; Optimal extraction; Groundwater;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:59:y:2020:i:c:s0928765518304287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.