IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v46y2015icp40-48.html
   My bibliography  Save this article

Is increasing aircraft size common practice of airlines at congested airports?

Author

Listed:
  • Berster, Peter
  • Gelhausen, Marc C.
  • Wilken, Dieter

Abstract

If the overall demand for air transport grows, but additional airport capacity is not available at congested airports, we could assume that airlines will offer flights with more seats in order to cope with the demand. An analysis of frequency and average seat capacity developments at congested, and not yet congested airports, has shown that the hypothesis of bigger aircraft being used in congested situations is valid in most instances, although not at all airports. The objective of this paper is to report on an analysis of the development of average seat capacity at congested airports, in contrast to the situation at not yet congested airports, and to find out the reasons for airlines increasing the number of seats at congested airports, by means of a statistical model using variables including the degree of airport congestion and average flight distance.

Suggested Citation

  • Berster, Peter & Gelhausen, Marc C. & Wilken, Dieter, 2015. "Is increasing aircraft size common practice of airlines at congested airports?," Journal of Air Transport Management, Elsevier, vol. 46(C), pages 40-48.
  • Handle: RePEc:eee:jaitra:v:46:y:2015:i:c:p:40-48
    DOI: 10.1016/j.jairtraman.2015.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096969971500040X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2015.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charlton, Andrew, 2009. "Airport regulation: Does a mature industry have mature regulation?," Journal of Air Transport Management, Elsevier, vol. 15(3), pages 116-120.
    2. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    3. Martin Dresner & Robert Windle & Yuliang Yao, 2002. "Airport Barriers to Entry in the US," Journal of Transport Economics and Policy, University of Bath, vol. 36(3), pages 389-405, September.
    4. Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2013. "Do airport capacity constraints have a serious impact on the future development of air traffic?," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 3-13.
    5. Branko Bubalo & Joachim Daduna, 2011. "Airport capacity and demand calculations by simulation—the case of Berlin-Brandenburg International Airport," Netnomics, Springer, vol. 12(3), pages 161-181, October.
    6. Fukui, Hideki, 2012. "Do carriers abuse the slot system to inhibit airport capacity usage? Evidence from the US experience," Journal of Air Transport Management, Elsevier, vol. 24(C), pages 1-6.
    7. Button, Kenneth, 2002. "Debunking some common myths about airport hubs," Journal of Air Transport Management, Elsevier, vol. 8(3), pages 177-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Redondi, Renato & Gudmundsson, Sveinn Vidar, 2016. "Congestion spill effects of Heathrow and Frankfurt airports on connection traffic in European and Gulf hub airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 287-297.
    2. Hu, Rong & Feng, Huilin & Witlox, Frank & Zhang, Junfeng & Connor, Kevin O., 2022. "Airport capacity constraints and air traffic demand in China," Journal of Air Transport Management, Elsevier, vol. 103(C).
    3. Wilken, Dieter & Berster, Peter & Gelhausen, Marc C., 2016. "Analysis of demand structures on intercontinental routes to and from Europe with a view to identifying potential for new low-cost services," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 79-90.
    4. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    5. Waltert, Manuel & Wicki, Jan & Jimenez Perez, Edgar & Pagliari, Romano, 2021. "Ratio-based design hour determination for airport passenger terminal facilities," Journal of Air Transport Management, Elsevier, vol. 96(C).
    6. Zakharenko, Roman & Luttmann, Alexander, 2023. "Downsizing the jet: A forecast of economic effects of increased automation in aviation," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 25-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukui, Hideki, 2019. "How do slot restrictions affect airfares? New evidence from the US airline industry," Economics of Transportation, Elsevier, vol. 17(C), pages 51-71.
    2. Gudmundsson, Sveinn & Paleari, Stefano & Redondi, Renato, 2014. "Spillover effects of the development constraints in London Heathrow Airport," Journal of Transport Geography, Elsevier, vol. 35(C), pages 64-74.
    3. Redondi, Renato & Gudmundsson, Sveinn Vidar, 2016. "Congestion spill effects of Heathrow and Frankfurt airports on connection traffic in European and Gulf hub airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 287-297.
    4. Fukui, Hideki, 2014. "Effect of slot trading on route-level competition: Evidence from experience in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 124-141.
    5. Hu, Rong & Feng, Huilin & Witlox, Frank & Zhang, Junfeng & Connor, Kevin O., 2022. "Airport capacity constraints and air traffic demand in China," Journal of Air Transport Management, Elsevier, vol. 103(C).
    6. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    7. Karima Kourtit, 2017. "Effective Clusters as Territorial Performance Engines in a Regional Development Strategy - A Triple-Layer DEA Assessment of the Aviation Valley in Poland," REGION, European Regional Science Association, vol. 4, pages 39-63.
    8. Sismanidou, Athina & Tarradellas, Joan & Bel, Germà & Fageda, Xavier, 2013. "Estimating potential long-haul air passenger traffic in national networks containing two or more dominant cities," Journal of Transport Geography, Elsevier, vol. 26(C), pages 108-116.
    9. Koo, Tay T.R. & Hossein Rashidi, Taha & Park, Jin-Woo & Wu, Cheng-Lung & Tseng, Wen-Chun, 2017. "The effect of enhanced international air access on the demand for peripheral tourism destinations: Evidence from air itinerary choice behaviour of Korean visitors to Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 116-129.
    10. Zhang, Yahua & Sampaio, Breno & Fu, Xiaowen & Huang, Zhibin, 2018. "Pricing dynamics between airline groups with dual-brand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 46-59.
    11. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    12. Pels, Eric, 2021. "Optimality of the hub-spoke system: A review of the literature, and directions for future research," Transport Policy, Elsevier, vol. 104(C), pages 1-10.
    13. Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere & Voltes-Dorta, Augusto, 2013. "Classifying airports according to their hub dimensions: an application to the US domestic network," Journal of Transport Geography, Elsevier, vol. 33(C), pages 188-195.
    14. Brown, Richard S., 2016. "Lobbying, political connectedness and financial performance in the air transportation industry," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 61-69.
    15. Fu, Qiang & Wang, Nuo & Shen, MingQi & Song, NanQi & Yan, HuaKun, 2016. "A study of the site selection of a civil airport based on the risk of bird strikes: The case of Dalian, China," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 17-30.
    16. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    17. Zhang, Qiong & Yang, Hangjun & Wang, Qiang & Zhang, Anming, 2014. "Market power and its determinants in the Chinese airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 1-13.
    18. Yanhao Wei, 2018. "Airline networks, traffic densities, and value of links," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 341-370, September.
    19. Chen, Zhe & Wang, Zhengli & Jiang, Hai, 2019. "Analyzing the heterogeneous impacts of high-speed rail entry on air travel in China: A hierarchical panel regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 86-98.
    20. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:46:y:2015:i:c:p:40-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.