IDEAS home Printed from https://ideas.repec.org/a/kap/netnom/v12y2011i3p161-181.html
   My bibliography  Save this article

Airport capacity and demand calculations by simulation—the case of Berlin-Brandenburg International Airport

Author

Listed:
  • Branko Bubalo
  • Joachim Daduna

Abstract

Airports are vital parts of traffic infrastructure and networks in global and dynamic economies securing inter- and transcontinental mobility of goods and people in spatially dislocated market structures. The operational capacity of an airport must be dimensioned under a long-term strategic view as its productivity is determined by available infrastructure. Often expansion projects for, e.g., an additional runway require a timeframe of up to twenty years for negotiation, planning and construction. The correction of existing or future bottlenecks will be increasingly difficult, partly due to public and political opposition and environmental awareness. From this point of view we critically examine the published planning figures and forecasts of demand and capacity of the currently constructed Berlin-Brandenburg International airport over a 20-year timeframe. Our methodology is based on a computer simulation of an independent parallel runway in segregated mode. Increasing traffic and changing traffic mix are simulated with the airport and airspace modeling tool SIMMOD, which provides the output data to calculate the capacity utilization and chosen level of service indicator minutes of average delay per flight. The simulation has shown that the practical capacity of 76 flights per hour is the maximum demand to be served under the defined assumptions. We discuss our findings and compare our results with other airports operating a similar runway layout. Copyright Springer Science+Business Media, LLC. 2011

Suggested Citation

  • Branko Bubalo & Joachim Daduna, 2011. "Airport capacity and demand calculations by simulation—the case of Berlin-Brandenburg International Airport," Netnomics, Springer, vol. 12(3), pages 161-181, October.
  • Handle: RePEc:kap:netnom:v:12:y:2011:i:3:p:161-181
    DOI: 10.1007/s11066-011-9065-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11066-011-9065-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11066-011-9065-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jason A. D. Atkin & Edmund K. Burke & John S. Greenwood & Dale Reeson, 2009. "An examination of take-off scheduling constraints at London Heathrow airport," Public Transport, Springer, vol. 1(3), pages 169-187, August.
    2. Bauerle, N. & Engelhardt-Funke, O. & Kolonko, M., 2007. "On the waiting time of arriving aircrafts and the capacity of airports with one or two runways," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1180-1196, March.
    3. Hansen, Mark, 2002. "Micro-level analysis of airport delay externalities using deterministic queuing models: a case study," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 73-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Rong & Feng, Huilin & Witlox, Frank & Zhang, Junfeng & Connor, Kevin O., 2022. "Airport capacity constraints and air traffic demand in China," Journal of Air Transport Management, Elsevier, vol. 103(C).
    2. Berster, Peter & Gelhausen, Marc C. & Wilken, Dieter, 2015. "Is increasing aircraft size common practice of airlines at congested airports?," Journal of Air Transport Management, Elsevier, vol. 46(C), pages 40-48.
    3. Paola Di Mascio & Gregorio Rappoli & Laura Moretti, 2020. "Analytical Method for Calculating Sustainable Airport Capacity," Sustainability, MDPI, vol. 12(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    2. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    3. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    4. Yi Liu & Mark Hansen, 2016. "Incorporating Predictability Into Cost Optimization for Ground Delay Programs," Transportation Science, INFORMS, vol. 50(1), pages 132-149, February.
    5. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    6. Jacquillat, Alexandre & Odoni, Amedeo R., 2015. "Endogenous control of service rates in stochastic and dynamic queuing models of airport congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 133-151.
    7. Nombela, Gustavo & de Rus, Gines & Betancor, Ofelia, 2004. "Internalizing airport congestion," Utilities Policy, Elsevier, vol. 12(4), pages 323-331, December.
    8. Chaug-Ing Hsu & Ching-Cheng Chao & Nai-Wen Hsu, 2015. "Control strategies for departure process delays at airport passenger terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 214-237, March.
    9. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    10. Nikolas Pyrgiotis & Amedeo Odoni, 2016. "On the Impact of Scheduling Limits: A Case Study at Newark Liberty International Airport," Transportation Science, INFORMS, vol. 50(1), pages 150-165, February.
    11. Caccavale, Maria Virginia & Iovanella, Antonio & Lancia, Carlo & Lulli, Guglielmo & Scoppola, Benedetto, 2014. "A model of inbound air traffic: The application to Heathrow airport," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 116-122.
    12. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    13. Swaroop, Prem & Zou, Bo & Ball, Michael O. & Hansen, Mark, 2012. "Do more US airports need slot controls? A welfare based approach to determine slot levels," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1239-1259.
    14. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    15. Gwiggner, Claus & Nagaoka, Sakae, 2014. "Data and queueing analysis of a Japanese air-traffic flow," European Journal of Operational Research, Elsevier, vol. 235(1), pages 265-275.
    16. Martin, Juan Carlos & Betancor, Ofelia, 2006. "Evaluating different pricing policies on social welfare: an application to Madrid Barajas," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 32, pages 114-135.
    17. Kim, Myeonghyeon & Park, Sunwook, 2021. "Airport and route classification by modelling flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 93(C).
    18. Itoh, Eri & Mitici, Mihaela, 2020. "Analyzing tactical control strategies for aircraft arrivals at an airport using a queuing model," Journal of Air Transport Management, Elsevier, vol. 89(C).
    19. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    20. Lin, Pei-Chun, 2023. "The propagation of European airports’ on-time performance and on-time flights via air connectivity prior to the Covid-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netnom:v:12:y:2011:i:3:p:161-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.