IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v103y2022ics0969699722000710.html
   My bibliography  Save this article

Airport capacity constraints and air traffic demand in China

Author

Listed:
  • Hu, Rong
  • Feng, Huilin
  • Witlox, Frank
  • Zhang, Junfeng
  • Connor, Kevin O.

Abstract

This paper analyzes the degree of airport capacity utilization of 239 China's civil airports in 2019. Our database is unique and very detailed in that we combine actual operation and scheduled flight data. We are particularly interested in the list of capacity constrained airports, their characteristics, and future development. To this end, we develop a classification matrix to investigate capacity constrained airports. We then forecast the demand and capacity of these airports under three scenarios and use the data as inputs for Monte Carlo simulation, to predict the capacity utilization trends of these airports in 2025 and 2035. Our research shows that: (1) There are significant differences between airports in terms of airport congestion status, and over 85% of airports in China experience no overload; (2) Big spatial differences are observed in the distribution of airports with less spare capacity and can be summarized as “more in eastern China and less in western China†; (3) Ten airports stand out as seriously capacity constrained and all of them serves as international or regional hubs; (4) Airport location, airport orientation, and linkage to the local economy are closely related to airport capacity constraints; (5) As most constrained airports are going to increase capacity in the future, as well as the outbreak of COVID-19 negatively affected aviation demand, most airports will have sufficient capacity reserves in the future. However, Shenzhen Bao'an and Xi'an Xianyang International Airport will face heavy capacity pressure. We also provide several recommendations to improve airport capacity utilization and relieve capacity shortages.

Suggested Citation

  • Hu, Rong & Feng, Huilin & Witlox, Frank & Zhang, Junfeng & Connor, Kevin O., 2022. "Airport capacity constraints and air traffic demand in China," Journal of Air Transport Management, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jaitra:v:103:y:2022:i:c:s0969699722000710
    DOI: 10.1016/j.jairtraman.2022.102251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722000710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Wee, Bert & Witlox, Frank, 2021. "COVID-19 and its long-term effects on activity participation and travel behaviour: A multiperspective view," Journal of Transport Geography, Elsevier, vol. 95(C).
    2. Julia Bennell & Mohammad Mesgarpour & Chris Potts, 2013. "Airport runway scheduling," Annals of Operations Research, Springer, vol. 204(1), pages 249-270, April.
    3. Yu, Meng & Chen, Zhenhua, 2021. "The effect of aviation responses to the control of imported COVID-19 cases," Journal of Air Transport Management, Elsevier, vol. 97(C).
    4. Senguttuvan, P.S, 2006. "Economics of the Airport Capacity System in the Growing Demand of Air Traffic – A Global View," 47th Annual Transportation Research Forum, New York, New York, March 23-25, 2006 208018, Transportation Research Forum.
    5. Xia, Wenyi & Zhang, Anming, 2016. "High-speed rail and air transport competition and cooperation: A vertical differentiation approach," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 456-481.
    6. Sheng, Dian & Li, Zhi-Chun & Xiao, Yi-bin & Fu, Xiaowen, 2015. "Slot auction in an airport network with demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 79-100.
    7. Gudmundsson, S.V. & Cattaneo, M. & Redondi, R., 2021. "Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19," Journal of Air Transport Management, Elsevier, vol. 91(C).
    8. Hu, Rong & Chen, Lin & Zheng, Lijun, 2018. "Congestion pricing and environmental cost at Guangzhou Baiyun International Airport," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 126-132.
    9. Truong, Dothang, 2021. "Estimating the impact of COVID-19 on air travel in the medium and long term using neural network and Monte Carlo simulation," Journal of Air Transport Management, Elsevier, vol. 96(C).
    10. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    11. Dube, Kaitano & Nhamo, Godwell & Chikodzi, David, 2021. "COVID-19 pandemic and prospects for recovery of the global aviation industry," Journal of Air Transport Management, Elsevier, vol. 92(C).
    12. O'Connor, Kevin, 2019. "Air transport research: The next 25 years," Journal of Transport Geography, Elsevier, vol. 81(C).
    13. Zhang, Shengrun & Zheng, Hailong & Chen, Yuting & Witlox, Frank, 2020. "Factors influencing the hub connectivity of Beijing Capital Airport in its international markets," Journal of Air Transport Management, Elsevier, vol. 88(C).
    14. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    15. Berster, Peter & Gelhausen, Marc C. & Wilken, Dieter, 2015. "Is increasing aircraft size common practice of airlines at congested airports?," Journal of Air Transport Management, Elsevier, vol. 46(C), pages 40-48.
    16. Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2013. "Do airport capacity constraints have a serious impact on the future development of air traffic?," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 3-13.
    17. Evans, Antony & Schäfer, Andreas, 2011. "The impact of airport capacity constraints on future growth in the US air transportation system," Journal of Air Transport Management, Elsevier, vol. 17(5), pages 288-295.
    18. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo R. & Pita, João P., 2018. "An optimization approach for airport slot allocation under IATA guidelines," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 132-156.
    19. Fageda, Xavier & Flores-Fillol, Ricardo, 2015. "A note on optimal airline networks under airport congestion," Economics Letters, Elsevier, vol. 128(C), pages 90-94.
    20. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
    21. Madas, Michael A. & Zografos, Konstantinos G., 2008. "Airport capacity vs. demand: Mismatch or mismanagement?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 203-226, January.
    22. Branko Bubalo & Joachim Daduna, 2011. "Airport capacity and demand calculations by simulation—the case of Berlin-Brandenburg International Airport," Netnomics, Springer, vol. 12(3), pages 161-181, October.
    23. Upham, Paul & Thomas, Callum & Gillingwater, David & Raper, David, 2003. "Environmental capacity and airport operations: current issues and future prospects," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 145-151.
    24. Alexandre Jacquillat & Amedeo R. Odoni, 2015. "An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation," Operations Research, INFORMS, vol. 63(6), pages 1390-1410, December.
    25. Gudmundsson, Sveinn & Paleari, Stefano & Redondi, Renato, 2014. "Spillover effects of the development constraints in London Heathrow Airport," Journal of Transport Geography, Elsevier, vol. 35(C), pages 64-74.
    26. Nikolas Pyrgiotis & Amedeo Odoni, 2016. "On the Impact of Scheduling Limits: A Case Study at Newark Liberty International Airport," Transportation Science, INFORMS, vol. 50(1), pages 150-165, February.
    27. O'Connor, Kevin & Fuellhart, Kurt, 2016. "Airports and regional air transport markets: A new perspective," Journal of Transport Geography, Elsevier, vol. 53(C), pages 78-82.
    28. Zhang, Yimin, 2010. "Network structure and capacity requirement: The case of China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 189-197, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Rong & Huang, Mengyuan & Zhang, Junfeng & Witlox, Frank, 2023. "On the Matthew effect in a multi-airport system: Evidence from the viewpoint of airport green efficiency," Journal of Air Transport Management, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavusoglu, Sabriye Sera & Macário, Rosário, 2021. "Minimum delay or maximum efficiency? Rising productivity of available capacity at airports: Review of current practice and future needs," Journal of Air Transport Management, Elsevier, vol. 90(C).
    2. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    3. Androutsopoulos, Konstantinos N. & Madas, Michael A., 2019. "Being fair or efficient? A fairness-driven modeling extension to the strategic airport slot scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 37-60.
    4. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen, 2019. "Modeling the effects of airline slot hoarding behavior under the grandfather rights with use-it-or-lose-it rule," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 48-61.
    5. Fu, Xiaowen & Lei, Zheng & Liu, Shaoxuan & Wang, Kun & Yan, Jia, 2020. "On-time performance policy in the Chinese aviation market - An innovation or disruption?," Transport Policy, Elsevier, vol. 95(C), pages 14-23.
    6. Redondi, Renato & Gudmundsson, Sveinn Vidar, 2016. "Congestion spill effects of Heathrow and Frankfurt airports on connection traffic in European and Gulf hub airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 287-297.
    7. Nuno Antunes Ribeiro & Alexandre Jacquillat & António Pais Antunes, 2019. "A Large-Scale Neighborhood Search Approach to Airport Slot Allocation," Transportation Science, INFORMS, vol. 53(6), pages 1772-1797, November.
    8. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo, 2019. "Improving slot allocation at Level 3 airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 32-54.
    9. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    10. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    11. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo R. & Pita, João P., 2018. "An optimization approach for airport slot allocation under IATA guidelines," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 132-156.
    12. Wang, Chun-Han & Zhang, Wenzhu & Dai, Yue & Lee, Yu-Ching, 2022. "Frequency competition among airlines on coordinated airports network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 484-495.
    13. Hanson, Daniel & Toru Delibasi, Tuba & Gatti, Matteo & Cohen, Shamai, 2022. "How do changes in economic activity affect air passenger traffic? The use of state-dependent income elasticities to improve aviation forecasts," Journal of Air Transport Management, Elsevier, vol. 98(C).
    14. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    15. Androutsopoulos, Konstantinos N. & Manousakis, Eleftherios G. & Madas, Michael A., 2020. "Modeling and solving a bi-objective airport slot scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 135-151.
    16. Jorge, Diana & Antunes Ribeiro, Nuno & Pais Antunes, António, 2021. "Towards a decision-support tool for airport slot allocation: Application to Guarulhos (Sao Paulo, Brazil)," Journal of Air Transport Management, Elsevier, vol. 93(C).
    17. Pouget, Lilian & Ribeiro, Nuno Antunes & Odoni, Amedeo R. & Antunes, António Pais, 2023. "How do airlines react to slot displacements? Evidence from a major airport," Journal of Air Transport Management, Elsevier, vol. 106(C).
    18. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2021. "Optimising airport slot allocation considering flight-scheduling flexibility and total airport capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 50-87.
    19. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
    20. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2023. "Incorporating slot valuation in making airport slot scheduling decisions," European Journal of Operational Research, Elsevier, vol. 308(1), pages 436-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:103:y:2022:i:c:s0969699722000710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.