IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v21y2018icp22-32.html
   My bibliography  Save this article

Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks

Author

Listed:
  • Psaltoglou, Artemis
  • Calle, Eusebi

Abstract

This paper describes a novel methodology for identifying critical nodes in urban public transportation networks. The methodology, which is based on graph theory, transportation and urban planning, seeks to optimize the use of city resources. The term “criticality” is defined in terms of the connectivity and activity density of a transportation node over time. The connectivity of a node is defined by the operational characteristics of the system (e.g., vehicle capacity, velocity, distance and frequency) whereas the urban activity density is based on urban planning indicators (e.g., population density, land use and urban form) along with the time factor. These two components are used to create the enhanced connectivity index that reflects the interaction between a transportation network and an urban environment. Detecting critical nodes in a transportation network over time is important because knowledge about the nodes that are likely to be more occupied supports strategy development, public resource management and funding prioritization. Moreover, the enhanced connectivity index can be used to enhance the intelligence of existing transportation systems. The application of the methodology to the bus system of a medium-sized city provides valuable insights into the spatial and temporal distributions of critical nodes. The results demonstrate that node criticality fluctuates considerably over time, because nodes with high activity during the morning hours are less critical during the evening hours, and vice versa. Additionally, high functional connectivity does not necessarily imply high node criticality.

Suggested Citation

  • Psaltoglou, Artemis & Calle, Eusebi, 2018. "Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 22-32.
  • Handle: RePEc:eee:ijocip:v:21:y:2018:i:c:p:22-32
    DOI: 10.1016/j.ijcip.2018.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548218300180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2018.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    3. Welch, Timothy F. & Mishra, Sabyasachee, 2013. "A measure of equity for public transit connectivity," Journal of Transport Geography, Elsevier, vol. 33(C), pages 29-41.
    4. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    5. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    6. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Gritzalis, Dimitris, 2015. "Risk mitigation strategies for critical infrastructures based on graph centrality analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 34-44.
    7. Karou, Saleem & Hull, Angela, 2014. "Accessibility modelling: predicting the impact of planned transport infrastructure on accessibility patterns in Edinburgh, UK," Journal of Transport Geography, Elsevier, vol. 35(C), pages 1-11.
    8. César Ducruet & Igor Lugo, 2013. "Structure and dynamics of transportation networks : Models, concepts, and applications," Post-Print hal-03247178, HAL.
    9. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    10. Chris Jacobs-Crisioni & Piet Rietveld & Eric Koomen & Emmanouil Tranos, 2014. "Evaluating the Impact of Land-Use Density and Mix on Spatiotemporal Urban Activity Patterns: An Exploratory Study Using Mobile Phone Data," Environment and Planning A, , vol. 46(11), pages 2769-2785, November.
    11. Mu, Rui & Jong, Martin de, 2012. "Establishing the conditions for effective transit-oriented development in China: the case of Dalian," Journal of Transport Geography, Elsevier, vol. 24(C), pages 234-249.
    12. Tsekeris, Theodore & Souliotou, Anastasia-Zoi, 2014. "Graph-theoretic evaluation support tool for fixed-route transport development in metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 88-95.
    13. Trivik Verma & Wendy Ellens & Robert E. Kooij, 2015. "Context-independent centrality measures underestimate the vulnerability of power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 62-81.
    14. Angeloudis, Panagiotis & Fisk, David, 2006. "Large subway systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 553-558.
    15. Zio, Enrico & Piccinelli, Roberta, 2010. "Randomized flow model and centrality measure for electrical power transmission network analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 379-385.
    16. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    17. Laurie Schintler & Rajendra Kulkarni & Sean Gorman & Roger Stough, 2007. "Using Raster-Based GIS and Graph Theory to Analyze Complex Networks," Networks and Spatial Economics, Springer, vol. 7(4), pages 301-313, December.
    18. Chen, Cynthia & Chen, Jason & Barry, James, 2009. "Diurnal pattern of transit ridership: a case study of the New York City subway system," Journal of Transport Geography, Elsevier, vol. 17(3), pages 176-186.
    19. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    20. Stanley, John K., 2014. "Land use/transport integration: Starting at the right place," Research in Transportation Economics, Elsevier, vol. 48(C), pages 381-388.
    21. Caroline Gallez & Vincent Kaufmann & Hanja Maksim & Mariane Thebért & Christophe Guerrinha, 2013. "Coordinating Transport and Urban Planning: From Ideologies to Local Realities," European Planning Studies, Taylor & Francis Journals, vol. 21(8), pages 1235-1255, August.
    22. Cervero, Robert B., 2013. "Linking urban transport and land use in developing countries," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 7-24.
    23. Georgiadis, Georgios & Politis, Ioannis & Papaioannou, Panagiotis, 2014. "Measuring and improving the efficiency and effectiveness of bus public transport systems," Research in Transportation Economics, Elsevier, vol. 48(C), pages 84-91.
    24. Wang, Jiaoe & Mo, Huihui & Wang, Fahui & Jin, Fengjun, 2011. "Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 712-721.
    25. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yaoming & Wang, Junwei & Sheu, Jiuh-Biing, 2019. "On connectivity of post-earthquake road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 1-16.
    2. Zhang, Yifan & Ng, S. Thomas, 2021. "A hypothesis-driven framework for resilience analysis of public transport network under compound failure scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    3. Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan & Teixeira, Rui, 2022. "Identifying critical and vulnerable links: A new approach using the Fisher information matrix," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    2. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    4. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    5. Yingying Xing & Jian Lu & Shendi Chen, 2016. "Weighted Complex Network Analysis of Shanghai Rail Transit System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, August.
    6. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    8. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    9. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    10. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    11. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Malandri, Caterina & Fonzone, Achille & Cats, Oded, 2018. "Recovery time and propagation effects of passenger transport disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 7-17.
    13. Zachary Neal, 2018. "Is the Urban World Small? The Evidence for Small World Structure in Urban Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 615-631, September.
    14. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    15. Feng, Jia & Li, Xiamiao & Mao, Baohua & Xu, Qi & Bai, Yun, 2017. "Weighted complex network analysis of the Beijing subway system: Train and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 213-223.
    16. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    17. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Yingying Xing & Jian Lu & Shengdi Chen & Sunanda Dissanayake, 2017. "Vulnerability analysis of urban rail transit based on complex network theory: a case study of Shanghai Metro," Public Transport, Springer, vol. 9(3), pages 501-525, October.
    19. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    20. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:21:y:2018:i:c:p:22-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.