IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v32y2014icp88-95.html
   My bibliography  Save this article

Graph-theoretic evaluation support tool for fixed-route transport development in metropolitan areas

Author

Listed:
  • Tsekeris, Theodore
  • Souliotou, Anastasia-Zoi

Abstract

This paper presents a graph-theoretic analysis for supporting the evaluation of alternative fixed-route public transport development plans in metropolitan areas. Several indicators grounded on the theory of graphs and network science are suggested and calculated for evaluating prospective developments of the fixed-route transport system in the Athens metropolitan area, which includes the metro, tram and suburban railway. The comparative static analyses of past and scheduled line extensions and planned line constructions generally show the tendency of the system towards small-world networking with scale-free characteristics, which implies increasing scale economies and reliance on a few large transfer stations. The results suggest that policy-makers can choose the option of constructing a semi-circumferential line in the middle (compared to the end) of the system development process, in order to trade investment cost for increased levels of service and robustness.

Suggested Citation

  • Tsekeris, Theodore & Souliotou, Anastasia-Zoi, 2014. "Graph-theoretic evaluation support tool for fixed-route transport development in metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 88-95.
  • Handle: RePEc:eee:trapol:v:32:y:2014:i:c:p:88-95
    DOI: 10.1016/j.tranpol.2014.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X14000146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2014.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Erratum to ''Generic functions of railway stations--A conceptual basis for the development of common system understanding and assessment criteria'' [Transp. Policy 18 (2010) 446-455]," Transport Policy, Elsevier, vol. 18(4), pages 648-648, August.
    3. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    4. Richard N. Langlois, 2002. "Modularity in Technology and Organization," Chapters, in: Nicolai J. Foss & Peter G. Klein (ed.), Entrepreneurship and the Firm, chapter 2, Edward Elgar Publishing.
    5. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Generic functions of railway stations--A conceptual basis for the development of common system understanding and assessment criteria," Transport Policy, Elsevier, vol. 18(2), pages 446-455, March.
    6. William L. Garrison, 1960. "Connectivity Of The Interstate Highway System," Papers in Regional Science, Wiley Blackwell, vol. 6(1), pages 121-137, January.
    7. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    8. Cox, Andrew & Prager, Fynnwin & Rose, Adam, 2011. "Transportation security and the role of resilience: A foundation for operational metrics," Transport Policy, Elsevier, vol. 18(2), pages 307-317, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Ogryzek & Daria Adamska-Kmieć & Anna Klimach, 2020. "Sustainable Transport: An Efficient Transportation Network—Case Study," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    2. Psaltoglou, Artemis & Calle, Eusebi, 2018. "Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 22-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cats, O. & Yap, M. & van Oort, N., 2016. "Exposing the role of exposure: Public transport network risk analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 1-14.
    2. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    3. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    5. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Biyue Wang & Martin de Jong & Ellen van Bueren & Aksel Ersoy & Yanchun Meng, 2023. "Transit-Oriented Development in China: A Comparative Content Analysis of the Spatial Plans of High-Speed Railway Station Areas," Land, MDPI, vol. 12(9), pages 1-21, September.
    7. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    8. Malandri, Caterina & Fonzone, Achille & Cats, Oded, 2018. "Recovery time and propagation effects of passenger transport disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 7-17.
    9. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    10. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    12. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    13. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    14. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    15. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Psaltoglou, Artemis & Calle, Eusebi, 2018. "Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 22-32.
    18. Hu, Jie & Wen, Weiping & Zhai, Changhai & Pei, Shunshun, 2024. "Post-earthquake functionality assessment for urban subway systems: Incorporating the combined effects of seismic performance of structural and non-structural systems and functional interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Zhiru Wang & Wubin Ma & Albert Chan, 2020. "Exploring the Relationships between the Topological Characteristics of Subway Networks and Service Disruption Impact," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    20. Liu, Xueli & Jiang, Chunxia & Wang, Feng & Yao, Shujie, 2021. "The impact of high-speed railway on urban housing prices in China: A network accessibility perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 84-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:32:y:2014:i:c:p:88-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.