IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2156309.html
   My bibliography  Save this article

A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory

Author

Listed:
  • Lin Zhang
  • Jian Lu
  • Bai-bai Fu
  • Shu-bin Li

Abstract

The complexity and resilience of urban public transit network (PTN) are the interdisciplinary study area between transportation engineering and system science, which is a good demonstration of applying complex network theory to promote the development of engineering science. The deep understanding of this study helps to provide a new perspective for analyzing the reliability of urban PTN. Following study process of the complexity and resilience of complex network, this paper reviews the complexity and resilience of PTN from four topics, i.e., the PTN complexity, the static resilience of PTN, the dynamic resilience (cascading failures based resilience) of single layered PTN, and the dynamic resilience of interdependent PTN. In the literature review, multiple key items are, respectively, extracted for each topic, and the engineering applicability of each topic is also analyzed, which are both for obtaining the key features of this study area. Finally, in order to realize the development trend of cyclic and forward—complex network theory, network resilience theory, transforming into a realistic model and method that is close to actual public transit operation, engineering application and practice, and contributing to complex network theory, the study status is summarized and the future development trend is prospected.

Suggested Citation

  • Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
  • Handle: RePEc:hin:complx:2156309
    DOI: 10.1155/2018/2156309
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/2156309.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/2156309.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2156309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    2. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    3. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    4. Hui Zhang & Cheng-Xiang Zhuge & Xiang Zhao & Wen-Bo Song, 2018. "Assessing transfer property and reliability of urban bus network based on complex network theory," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(01), pages 1-13, January.
    5. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    6. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    7. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    8. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    9. Bai-Bai Fu & Lin Zhang & Shu-Bin Li & Yun-Xuan Li, 2015. "Survivability of public transit network based on network structure entropy," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(09), pages 1-11.
    10. von Ferber, C. & Holovatch, T. & Holovatch, Yu. & Palchykov, V., 2007. "Network harness: Metropolis public transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 585-591.
    11. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    12. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    13. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    14. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    15. Xiaoqian Sun & Sebastian Wandelt & Xianbin Cao, 2017. "On Node Criticality in Air Transportation Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 737-761, September.
    16. Wang, Jianwei & Li, Yun & Zheng, Qiaofang, 2015. "Cascading load model in interdependent networks with coupled strength," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 242-253.
    17. Wu, Liusan & Tan, Qingmei & Zhang, Yuehui, 2013. "Network connectivity entropy and its application on network connectivity reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5536-5541.
    18. Chakrabarti, Sandip & Giuliano, Genevieve, 2015. "Does service reliability determine transit patronage? Insights from the Los Angeles Metro bus system," Transport Policy, Elsevier, vol. 42(C), pages 12-20.
    19. Yuhai Tu, 2000. "How robust is the Internet?," Nature, Nature, vol. 406(6794), pages 353-354, July.
    20. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    21. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Complex interdependent supply chain networks: Cascading failure and robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 58-69.
    22. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    23. Veremyev, Alexander & Sorokin, Alexey & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Minimum vertex cover problem for coupled interdependent networks with cascading failures," European Journal of Operational Research, Elsevier, vol. 232(3), pages 499-511.
    24. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    25. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    26. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    27. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    28. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    29. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    30. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    31. Pant, Raghav & Barker, Kash & Grant, F. Hank & Landers, Thomas L., 2011. "Interdependent impacts of inoperability at multi-modal transportation container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 722-737, September.
    32. L Benguigui, 1995. "A Fractal Analysis of the Public Transportation System of Paris," Environment and Planning A, , vol. 27(7), pages 1147-1161, July.
    33. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2007. "Cascading failures on weighted urban traffic equilibrium networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 407-413.
    34. Xue, Fei & Bompard, Ettore & Huang, Tao & Jiang, Lin & Lu, Shaofeng & Zhu, Huaiying, 2017. "Interrelation of structure and operational states in cascading failure of overloading lines in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 728-740.
    35. Sui, Yi & Shao, Feng-jing & Sun, Ren-cheng & Li, Shu-jing, 2012. "Space evolution model and empirical analysis of an urban public transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3708-3717.
    36. Bertrand Berche & Christian Von Ferber & Taras Holovatch & Yurij Holovatch, 2012. "Transportation Network Stability: A Case Study Of City Transit," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(supp0), pages 1-19.
    37. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    38. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    39. Rui Ding & Norsidah Ujang & Hussain bin Hamid & Jianjun Wu, 2015. "Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    40. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    41. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    42. Lin Zhang & Bai-Bai Fu & Shu-Bin Li, 2016. "Cascading failures coupled model of interdependent double layered public transit network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhizhen & Chen, Hong & Liu, Enze & Hu, Wanyu, 2022. "Exploring the resilience assessment framework of urban road network for sustainable cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Meng Wei & Jiangang Xu & Yiwen Wang, 2022. "Resilience Assessment of Traffic Networks in Coastal Cities under Climate Change: A Case Study of One City with Unique Land Use Characteristics," Land, MDPI, vol. 11(10), pages 1-21, October.
    3. Li, Junjun & Yu, Anqi & Xu, Bowei, 2022. "Risk propagation and evolution analysis of multi-level handlings at automated terminals based on double-layer dynamic network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lin & Lu, Jian & Fu, Bai-bai & Li, Shu-bin, 2019. "A cascading failures model of weighted bus transit route network under route failure perspective considering link prediction effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1315-1330.
    2. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    6. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    7. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    8. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    9. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    10. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    11. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    12. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    13. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    14. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    15. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    17. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    18. Jianhua Zhang & Ziqi Wang & Shuliang Wang & Shengyang Luan & Wenchao Shao, 2020. "Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    19. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Fei Ma & Fei Liu & Kum Fai Yuen & Polin Lai & Qipeng Sun & Xiaodan Li, 2019. "Cascading Failures and Vulnerability Evolution in Bus–Metro Complex Bilayer Networks under Rainstorm Weather Conditions," IJERPH, MDPI, vol. 16(3), pages 1-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2156309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.