IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipas0951832021006487.html
   My bibliography  Save this article

Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network

Author

Listed:
  • Yin, Dezhi
  • Huang, Wencheng
  • Shuai, Bin
  • Liu, Hongyi
  • Zhang, Yue

Abstract

Most of the previous works abstracted the urban rail transit network (URTN) as a single-layer network, which does not fully consider the characteristic difference of each single line, the dependence among different lines, and the heterogeneity among different lines and transfer channels. Hence, we abstract each urban rail transit line as a single layer, the stations of the line are abstracted as nodes and the interval between adjacent stations is abstracted as an edge of a single-layer network. Transfer stations in different layers are connected and forms the transfer edges. Based on the established multi-layer directed weighted (time) network, we establish the structural characteristic analysis indexes including node degree, node betweenness, node efficiency, edge betweenness, layer betweenness and layer dependency. We add a new land layer network into the established multi-layer directed weighted network, and conduct cascading failure analysis on passenger travel considering node failure, edge failure and line failure, respectively. Two indicators including Passenger Travel Efficiency Ratio (PTER) and Passenger Flow Pressure of Lines (PFPL) are proposed to evaluate impact of cascading failure on network. A case study is conducted by using Chengdu Metro Network as the background. The results show that the proposed methodology is reasonable and effective.

Suggested Citation

  • Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006487
    DOI: 10.1016/j.ress.2021.108161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    2. Lee, Keumsook & Jung, Woo-Sung & Park, Jong Soo & Choi, M.Y., 2008. "Statistical analysis of the Metropolitan Seoul Subway System: Network structure and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6231-6234.
    3. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    4. Zhou, Yaoming & Kundu, Tanmoy & Goh, Mark & Sheu, Jiuh-Biing, 2021. "Multimodal transportation network centrality analysis for Belt and Road Initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Zhou, Jian & Coit, David W. & Felder, Frank A. & Wang, Dali, 2021. "Resiliency-based restoration optimization for dependent network systems against cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Zhou, Yu & Yang, Hai & Wang, Yun & Yan, Xuedong, 2021. "Integrated line configuration and frequency determination with passenger path assignment in urban rail transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 134-151.
    8. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    9. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    10. Zhong, Jilong & Sanhedrai, Hillel & Zhang, FengMing & Yang, Yi & Guo, Shu & Yang, Shunkun & Li, Daqing, 2020. "Network endurance against cascading overload failure," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    11. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    12. Sun, Lishan & Huang, Yuchen & Chen, Yanyan & Yao, Liya, 2018. "Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 12-24.
    13. Ailing Huang & H. Michael Zhang & Wei Guan & Yang Yang & Gaoqin Zong, 2015. "Cascading Failures in Weighted Complex Networks of Transit Systems Based on Coupled Map Lattices," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-16, January.
    14. Jin, Jian Gang & Lu, Linjun & Sun, Lijun & Yin, Jingbo, 2015. "Optimal allocation of protective resources in urban rail transit networks against intentional attacks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 73-87.
    15. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    16. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Yang, Shenhao & Chen, Weirong & Zhang, Xuexia & Yang, Weiqi, 2021. "A Graph-based Method for Vulnerability Analysis of Renewable Energy integrated Power Systems to Cascading Failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    19. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    20. Hong, Liu & Zhong, Xin & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2019. "Vulnerability analysis of public transit systems from the perspective of urban residential communities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 143-156.
    21. Wu, Yinghui & Yang, Hai & Zhao, Shuo & Shang, Pan, 2021. "Mitigating unfairness in urban rail transit operation: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 418-442.
    22. Wang, Yiqiao & Lu, Qiaoyi & Cao, Xianbin & Zhou, Xuesong & Latora, Vito & Tong, Lu Carol & Du, Wenbo, 2020. "Travel time analysis in the Chinese coupled aviation and high-speed rail network," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    23. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Gong, Huadong & Su, Xiaochao & Chen, Yicun, 2021. "Propagation model of cascading failure based on discrete dynamical system," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    24. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    25. Huang, Wencheng & Shuai, Bin & Sun, Yan & Wang, Yang & Antwi, Eric, 2018. "Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 292-303.
    26. Mustafa Abdulaal & Larry J. LeBlanc, 1979. "Methods for Combining Modal Split and Equilibrium Assignment Models," Transportation Science, INFORMS, vol. 13(4), pages 292-314, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Zhang, Lin & Wen, Huiying & Lu, Jian & Lei, Da & Li, Shubin & Ukkusuri, Satish V., 2022. "Exploring cascading reliability of multi-modal public transit network based on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Qin, Shaoyang, 2022. "Exploring the robustness of public transportation system on augmented network: A case from Nanjing China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    4. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Du, Yi-Mu & Sun, C.P., 2022. "A novel interpretable model of bathtub hazard rate based on system hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Qin, Shaoyang, 2022. "Exploring the robustness of public transportation system on augmented network: A case from Nanjing China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    4. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    7. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Yin, Dezhi, 2021. "Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on Cellular Automata," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    10. Yingying Xing & Jian Lu & Shendi Chen, 2016. "Weighted Complex Network Analysis of Shanghai Rail Transit System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, August.
    11. Jianhua Zhang & Ziqi Wang & Shuliang Wang & Shengyang Luan & Wenchao Shao, 2020. "Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    12. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    13. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    14. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    15. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    16. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    17. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    18. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    19. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    20. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.