IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122006628.html
   My bibliography  Save this article

Complex-network-based traffic network analysis and dynamics: A comprehensive review

Author

Listed:
  • Zhang, Mengyao
  • Huang, Tao
  • Guo, Zhaoxia
  • He, Zhenggang

Abstract

A traffic network can be viewed as a geometric graph with the nodes representing traffic infrastructures and the edges standing for the links between these nodes. In order to reduce road congestion and enhance traffic efficiency, complex network theory is a widely used research tool. Complex network theory can be used to analyze and evaluate network behaviors for systems with nontrivial structures and dynamical properties. Furthermore, complex network theory can quantitatively capture the structural and dynamical properties of traffic networks. This paper provides a comprehensive review of the complex network-based analysis and dynamics of traffic networks. The measures and properties of complex traffic networks are introduced first. Then the traffic flow characteristics are discussed, and the congestion analysis of complex traffic networks is presented. The robustness of complex traffic networks is also discussed, and the guidance of applying complex network theory in urban transportation is provided. Finally, we highlight a range of challenging open problems that should be addressed in future research and promising research opportunities.

Suggested Citation

  • Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122006628
    DOI: 10.1016/j.physa.2022.128063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006628
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meisam Akbarzadeh & Soroush Memarmontazerin & Sybil Derrible & Sayed Farzin Salehi Reihani, 2019. "Correction to: The role of travel demand and network centrality on the connectivity and resilience of an urban street system," Transportation, Springer, vol. 46(5), pages 1969-1969, October.
    2. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    3. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    4. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    6. Mazzarisi, Piero & Zaoli, Silvia & Lillo, Fabrizio & Delgado, Luis & Gurtner, Gérald, 2020. "New centrality and causality metrics assessing air traffic network interactions," Journal of Air Transport Management, Elsevier, vol. 85(C).
    7. Cumelles, Joel & Lordan, Oriol & Sallan, Jose M., 2021. "Cascading failures in airport networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    8. Gao, Zi-You & Li, Ke-Ping & Li, Xin-Gang & Huang, Hai-Jun & Mao, Bao-Hua & Zheng, Jian-Feng, 2007. "Scaling laws of the network traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 577-584.
    9. Wen-Long Shang & Yanyan Chen & Chengcheng Song & Washington Y. Ochieng, 2020. "Robustness Analysis of Urban Road Networks from Topological and Operational Perspectives," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, August.
    10. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    11. Alec Kirkley & Hugo Barbosa & Marc Barthelemy & Gourab Ghoshal, 2018. "From the betweenness centrality in street networks to structural invariants in random planar graphs," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    12. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    13. Wu, J.J. & Gao, Z.Y. & Sun, H.J., 2007. "Effects of the cascading failures on scale-free traffic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 505-511.
    14. Wang, Jiaoe & Mo, Huihui & Wang, Fahui, 2014. "Evolution of air transport network of China 1930–2012," Journal of Transport Geography, Elsevier, vol. 40(C), pages 145-158.
    15. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    16. Gérald Gurtner & Stefania Vitali & Marco Cipolla & Fabrizio Lillo & Rosario Nunzio Mantegna & Salvatore Miccichè & Simone Pozzi, 2014. "Multi-Scale Analysis of the European Airspace Using Network Community Detection," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-17, May.
    17. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    18. Hu, Hai-Bo & Wang, Xiao-Fan, 2008. "Unified index to quantifying heterogeneity of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3769-3780.
    19. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    20. Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.
    21. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    22. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    23. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    24. Sun, Li & Ling, Ximan & He, Kun & Tan, Qian, 2016. "Community structure in traffic zones based on travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 356-363.
    25. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    26. Zhang, Yifan & Ng, S. Thomas, 2021. "Unveiling the rich-club phenomenon in urban mobility networks through the spatiotemporal characteristics of passenger flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    27. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    28. Yang, Xu-Hua & Chen, Guang & Sun, Bao & Chen, Sheng-Yong & Wang, Wan-Liang, 2011. "Bus transport network model with ideal n-depth clique network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4660-4672.
    29. Zanin, Massimiliano, 2014. "Network analysis reveals patterns behind air safety events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 201-206.
    30. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    31. Wang, Dan & Jing, Yuanwei & Zhang, Siying, 2008. "Traffic dynamics based on a traffic awareness routing strategy on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 3001-3007.
    32. Meead Saberi & Homayoun Hamedmoghadam & Mudabber Ashfaq & Seyed Amir Hosseini & Ziyuan Gu & Sajjad Shafiei & Divya J. Nair & Vinayak Dixit & Lauren Gardner & S. Travis Waller & Marta C. González, 2020. "A simple contagion process describes spreading of traffic jams in urban networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    33. Sun, H.J. & Wu, J.J. & Gao, Z.Y., 2008. "Dynamics of traffic networks: From microscopic and macroscopic perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1648-1654.
    34. Lacasa, Lucas & Cea, Miguel & Zanin, Massimiliano, 2009. "Jamming transition in air transportation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3948-3954.
    35. Zheng, Jian-Feng & Gao, Zi-You, 2008. "A weighted network evolution with traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6177-6182.
    36. Shen, Yi & Ren, Gang & Zhang, Ning & Song, Guohao & Wang, Qin & Ran, Bin, 2020. "Effects of mutual traffic redistribution on robustness of interdependent networks to cascading failures under fluctuant load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    37. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    38. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    39. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    40. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    41. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    42. Angeloudis, Panagiotis & Fisk, David, 2006. "Large subway systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 553-558.
    43. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2008. "Dynamic urban traffic flow behavior on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 653-660.
    44. Ruan, Zhongyuan & Song, Congcong & Yang, Xu-hua & Shen, Guojiang & Liu, Zhi, 2019. "Empirical analysis of urban road traffic network: A case study in Hangzhou city, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    45. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    46. Li, W. & Cai, X., 2007. "Empirical analysis of a scale-free railway network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 693-703.
    47. Zhao, Laijun & Zhao, Yue & Hu, Qingmi & Li, Huiyong & Stoeter, Johan, 2018. "Evaluation of consolidation center cargo capacity and loctions for China railway express," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 58-81.
    48. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    49. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    50. Sybil Derrible, 2012. "Network Centrality of Metro Systems," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    51. Wei, Sheng & Zheng, Wei & Wang, Lei, 2021. "Understanding the configuration of bus networks in urban China from the perspective of network types and administrative division effect," Transport Policy, Elsevier, vol. 104(C), pages 1-17.
    52. Feng, Huifang & Bai, Fengshan & Xu, Youji, 2019. "Identification of critical roads in urban transportation network based on GPS trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    53. De Bona, Anderson Andrei & de Oliveira Rosa, Marcelo & Ono Fonseca, Keiko Verônica & Lüders, Ricardo, 2021. "A reduced model for complex network analysis of public transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    54. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    55. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2007. "Cascading failures on weighted urban traffic equilibrium networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 407-413.
    56. Wang, Minjie & Yang, Su & Sun, Yi & Gao, Jun, 2017. "Discovering urban mobility patterns with PageRank based traffic modeling and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 23-34.
    57. Wang, Jian & Wang, Ling, 2013. "Congestion analysis of traffic networks with direction-dependant heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 392-399.
    58. Shen, Bo & Gao, Zi-You, 2008. "Dynamical properties of transportation on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1352-1360.
    59. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    60. Sui, Yi & Shao, Feng-jing & Sun, Ren-cheng & Li, Shu-jing, 2012. "Space evolution model and empirical analysis of an urban public transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3708-3717.
    61. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    62. Meisam Akbarzadeh & Soroush Memarmontazerin & Sybil Derrible & Sayed Farzin Salehi Reihani, 2019. "The role of travel demand and network centrality on the connectivity and resilience of an urban street system," Transportation, Springer, vol. 46(4), pages 1127-1141, August.
    63. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    64. Bellingeri, M. & Bevacqua, D. & Scotognella, F. & LU, Zhe-Ming & Cassi, D., 2018. "Efficacy of local attack strategies on the Beijing road complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 316-328.
    65. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & Li, Rong & Wu, Jianjun, 2017. "Heuristic urban transportation network design method, a multilayer coevolution approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 71-83.
    66. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    67. Shen, Yi & Song, Guohao & Xu, Huangliang & Xie, Yuancheng, 2020. "Model of node traffic recovery behavior and cascading congestion analysis in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    68. Rui Ding & Norsidah Ujang & Hussain bin Hamid & Jianjun Wu, 2015. "Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    69. Lu, Feng & Liu, Kang & Duan, Yingying & Cheng, Shifen & Du, Fei, 2018. "Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 227-237.
    70. Guo, Shengmin & Wu, Ruoqian & Tong, Qingfeng & Zeng, Guanwen & Yang, Jian & Chen, Long & Zhu, Tongyu & Lv, Weifeng & Li, Daqing, 2018. "Is city traffic damaged by torrential rain?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1073-1080.
    71. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
    72. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    73. Tang, Jinjun & Liu, Fang & Zhang, Weibin & Zhang, Shen & Wang, Yinhai, 2016. "Exploring dynamic property of traffic flow time series in multi-states based on complex networks: Phase space reconstruction versus visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 635-648.
    74. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    75. Homayoun Hamedmoghadam & Mahdi Jalili & Hai L. Vu & Lewi Stone, 2021. "Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    76. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    77. Curado, Manuel & Tortosa, Leandro & Vicent, Jose F., 2021. "Identifying mobility patterns by means of centrality algorithms in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    78. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    2. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    3. Tang, Yongchuan & Dai, Guoxun & Zhou, Yonghao & Huang, Yubo & Zhou, Deyun, 2023. "Conflicting evidence fusion using a correlation coefficient-based approach in complex network," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Song, Lili & Wu, Yingying & Wu, Moyu & Ma, Jie & Cao, Wei, 2023. "An integrated approach to model connectivity and identify modules for habitat networks," Ecological Modelling, Elsevier, vol. 483(C).
    5. Samuel Ugwu & Pierre Miasnikof & Yuri Lawryshyn, 2023. "Distance Correlation Market Graph: The Case of S&P500 Stocks," Mathematics, MDPI, vol. 11(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    2. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    3. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    5. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    6. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    8. Wang, Jin-Fa & He, Xuan & Si, Shuai-Zong & Zhao, Hai & Zheng, Chunyang & Yu, Hao, 2019. "Using complex network theory for temporal locality in network traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 722-736.
    9. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    10. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    11. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    13. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.
    14. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    15. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    16. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    17. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).
    18. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    19. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    20. Wang, Zhaojing & Jia, Limin & Ma, Xiaoping & Sun, Xuehui & Tang, Qianxue & Qian, Sina, 2022. "Accessibility-oriented performance evaluation of high-speed railways using a three-layer network model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122006628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.