IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v521y2019icp551-561.html
   My bibliography  Save this article

An optimal routing strategy for transport networks with minimal transmission cost and high network capacity

Author

Listed:
  • Lin, Yi
  • Zhang, Jianwei
  • Yang, Bo
  • Liu, Hong
  • Zhao, Liping

Abstract

This paper proposes a routing strategy by minimizing an integrated transmission cost including route cost, distance cost, and traffic pressure cost, which are quantified based on the available transportation routes and travel distance of edges, and the degree of nodes, respectively. In the routing strategy, an arriving rate function is proposed based on the characteristics of heterogeneous traffic demand of nodes, and two parameters, congestion parameter and cost importance parameter are proposed to evaluate the importance of different transmission costs. By tuning the parameters, an optimal routing strategy with high capacity is obtained for different applications. The numerical results on theoretical networks (Watts–Strogatz small-world network and Barabási–Albert network) and real networks (the bus and metro network in Beijing, China) show that the generated new routing strategy can significantly improve the system capacity and operation efficiency. Moreover, the significance of the proposed parameters on evaluating the importance of different transmission costs is precisely proved based on the experimental results, which indicates the effectiveness of the proposed routing strategy.

Suggested Citation

  • Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.
  • Handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:551-561
    DOI: 10.1016/j.physa.2019.01.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300500
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    2. Shen, Yi, 2014. "The similarity of weights on edges and discovering of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 560-570.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    4. Shen, Yi, 2013. "Detect local communities in networks with an outside rate coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2821-2829.
    5. Yang, Han-Xin & Wang, Wen-Xu & Wu, Zhi-Xi & Wang, Bing-Hong, 2008. "Traffic dynamics in scale-free networks with limited packet-delivering capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6857-6862.
    6. Wołoszyn, Maciej & Stauffer, Dietrich & Kułakowski, Krzysztof, 2007. "Phase transitions in Nowak–Sznajd opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 453-458.
    7. Yingying Xing & Jian Lu & Shendi Chen, 2016. "Weighted Complex Network Analysis of Shanghai Rail Transit System," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, August.
    8. Pu, Cun-Lai & Zhou, Si-Yuan & Wang, Kai & Zhang, Yi-Feng & Pei, Wen-Jiang, 2012. "Efficient and robust routing on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 866-871.
    9. Meead Saberi & Hani S. Mahmassani & Dirk Brockmann & Amir Hosseini, 2017. "A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks," Transportation, Springer, vol. 44(6), pages 1383-1402, November.
    10. Tang, Xiao-Gai & Wong, Eric W.M. & Wu, Zhi-Xi, 2009. "Integrating network structure and dynamic information for better routing strategy on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2547-2554.
    11. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    12. Shen, Yi & Ren, Gang & Liu, Yang, 2016. "Finding the biased-shortest path with minimal congestion in networks via linear-prediction of queue length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 229-240.
    13. Tadić, Bosiljka, 2001. "Dynamics of directed graphs: the world-wide Web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(1), pages 273-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Jinlong & Kong, Lingkang & Li, Hui-Jia, 2023. "An effective edge-adding strategy for enhancing network traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Shen, Yi & Song, Guohao & Xu, Huangliang & Xie, Yuancheng, 2020. "Model of node traffic recovery behavior and cascading congestion analysis in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Masaki Kohana & Shinji Sakamoto & Shusuke Okamoto, 2019. "Web Browser Network Based on a BA Model for a Web-Based Virtual World," Future Internet, MDPI, vol. 11(7), pages 1-11, July.
    4. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jinlong & Kong, Lingkang & Li, Hui-Jia, 2023. "An effective edge-adding strategy for enhancing network traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Peng Wu & Yunfei Li & Chengbing Li, 2022. "Invulnerability of the Urban Agglomeration Integrated Passenger Transport Network under Emergency Events," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    3. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    5. Yang, Zhijie & Chen, Xiaolong, 2018. "Evolution assessment of Shanghai Urban Rail Transit Network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1263-1274.
    6. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    7. Jungyeol Hong & Reuben Tamakloe & Soobeom Lee & Dongjoo Park, 2019. "Exploring the Topological Characteristics of Complex Public Transportation Networks: Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    8. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    9. Jia, Tao & Qin, Kun & Shan, Jie, 2014. "An exploratory analysis on the evolution of the US airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 266-279.
    10. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    11. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    12. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    13. Feng, Jia & Li, Xiamiao & Mao, Baohua & Xu, Qi & Bai, Yun, 2017. "Weighted complex network analysis of the Beijing subway system: Train and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 213-223.
    14. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    15. Jing Cheng & Pei Yin, 2022. "Analysis of the Complex Network of the Urban Function under the Lockdown of COVID-19: Evidence from Shenzhen in China," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    16. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    17. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    18. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    19. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    20. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:551-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.