IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp376-394.html
   My bibliography  Save this article

Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume

Author

Listed:
  • Zhang, Xiaolei
  • Ren, Yibin
  • Huang, Baoxiang
  • Han, Yong

Abstract

Mastering the demand characteristics of a city’s bus travel and understanding the demand structure from time and space are of great significance for a city’s public traffic management. From the point of weighted complex network, this paper constructs the adjacency-stop bus complex network of Qingdao city in China using Space L method, and analyzes topological characteristics of the network. For the first time, by means of node weighting, the space–time characteristics of Qingdao bus travel demand are analyzed from the point of view of node strength. Through the analysis of the distribution characteristics of node strength at different periods of working and non-working days, it is found that node strength overall obeys SPL (Shift Power Law) tending to exponential distribution, which shows that the distribution of passenger flow in Qingdao bus travel is uneven, but not extremely uneven like power-law distribution. Comparing the changes of boarding volume at different time in one day both of working day and non-working day, the key bus stops and pivots of public transportation is extracted; and combined with the spatial distribution characteristics, it is found that there is a high correlation between bus travel demand and spatial attribute in Qingdao City, and a low correlation between bus travel demand and time attribute.

Suggested Citation

  • Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:376-394
    DOI: 10.1016/j.physa.2018.04.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304990
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pei-Pei & Kan Chen, & He, Yue & Zhou, Tao & Su, Bei-Bei & Jin, Yingdi & Chang, Hui & Zhou, Yue-Ping & Sun, Li-Cheng & Wang, Bing-Hong & He, Da-Ren, 2006. "Model and empirical study on some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 599-616.
    2. Ailing Huang & Jie Xiong & Jinsheng Shen & Wei Guan, 2016. "Evolution of weighted complex bus transit networks with flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(06), pages 1-17, June.
    3. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    4. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    5. Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
    6. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    7. Cui, Yaozu & Wang, Xingyuan & Li, Junqiu, 2014. "Detecting overlapping communities in networks using the maximal sub-graph and the clustering coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 85-91.
    8. Seaton, Katherine A. & Hackett, Lisa M., 2004. "Stations, trains and small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 635-644.
    9. Lü, Jinhu & Yu, Xinghuo & Chen, Guanrong, 2004. "Chaos synchronization of general complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 334(1), pages 281-302.
    10. Wang, Xingyuan & Li, Junqiu, 2013. "Detecting communities by the core-vertex and intimate degree in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2555-2563.
    11. Li, Junqiu & Wang, Xingyuan & Cui, Yaozu, 2014. "Uncovering the overlapping community structure of complex networks by maximal cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 398-406.
    12. William Day & Herbert Edelsbrunner, 1984. "Efficient algorithms for agglomerative hierarchical clustering methods," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 7-24, December.
    13. Kondo, Katsunao & Kitamura, Ryuichi, 1987. "Time-space constraints and the formation of trip chains," Regional Science and Urban Economics, Elsevier, vol. 17(1), pages 49-65, February.
    14. Holguín-Veras, José & Thorson, Ellen, 2003. "Modeling commercial vehicle empty trips with a first order trip chain model," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 129-148, February.
    15. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    16. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    17. Jingyi Lin & Yifang Ban, 2013. "Complex Network Topology of Transportation Systems," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 658-685, November.
    18. Li, Dongyan & Wang, Xingyuan & Huang, Penghe, 2017. "A fractal growth model: Exploring the connection pattern of hubs in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 200-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan, Dong-Yang & Yu, Wei & Liu, Xiao & Zhang, Yun-Peng & Dai, Wei-Di, 2018. "A framework of community detection based on individual labels in attribute networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 523-536.
    2. Wang, Tao & Wang, Hongjue & Wang, Xiaoxia, 2015. "A novel cosine distance for detecting communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 21-35.
    3. Zhang, Hong, 2015. "Moderate tolerance promotes tag-mediated cooperation in spatial Prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 52-61.
    4. Calzada-Infante, L. & Adenso-Díaz, B. & García Carbajal, S., 2020. "Analysis of the European international railway network and passenger transfers," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    6. Wang, Hongjue, 2019. "An universal algorithm for source location in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 620-630.
    7. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    8. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    9. Li, Jiawei & Wen, Xiangxi & Wu, Minggong & Liu, Fei & Li, Shuangfeng, 2020. "Identification of key nodes and vital edges in aviation network based on minimum connected dominating set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    11. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    12. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    13. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    14. Chang, Hui & Xu, Xiu-Lian & Hu, Chin-Kun & Fu, Chunhua & Feng, Ai-xia & He, Da-Ren, 2014. "A manipulator game model of urban public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 378-385.
    15. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    16. Lin, Yi & Zhang, Jianwei & Yang, Bo & Liu, Hong & Zhao, Liping, 2019. "An optimal routing strategy for transport networks with minimal transmission cost and high network capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 551-561.
    17. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    18. Wu, Jianshe & Jiao, Licheng, 2008. "Synchronization in dynamic networks with nonsymmetrical time-delay coupling based on linear feedback controllers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2111-2119.
    19. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    20. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:376-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.