IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5307-d270902.html
   My bibliography  Save this article

The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017

Author

Listed:
  • Shiguang Wang

    (School of Transportation, Jilin University, Changchun 130022, China
    Department of Geography and Geographic Information Science, University of Illinois at Urbana—Champaign, Urbana, IL 61801, USA
    Jilin Research Center for Intelligent Transportation System, Changchun 130022, China
    Jilin Province Key Laboratory of Road Traffic, Changchun 130022, China)

  • Dexin Yu

    (School of Transportation, Jilin University, Changchun 130022, China
    Jilin Research Center for Intelligent Transportation System, Changchun 130022, China
    Jilin Province Key Laboratory of Road Traffic, Changchun 130022, China)

  • Mei-Po Kwan

    (Department of Geography and Geographic Information Science, University of Illinois at Urbana—Champaign, Urbana, IL 61801, USA
    Department of Human Geography and Spatial Planning, Utrecht University, Utrecht 3508, The Netherlands)

  • Huxing Zhou

    (School of Transportation, Jilin University, Changchun 130022, China
    Jilin Research Center for Intelligent Transportation System, Changchun 130022, China
    Jilin Province Key Laboratory of Road Traffic, Changchun 130022, China)

  • Yongxing Li

    (School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Hongzhi Miao

    (School of Transportation, Jilin University, Changchun 130022, China)

Abstract

Understanding the evolution and growth patterns of urban road networks helps to design an efficient and sustainable transport network. The paper proposed a general study framework and analytical workflow based on network theory that could be applied to almost any city to analyze the temporal evolution of road networks. The main tasks follow three steps: vector road network drawing, topology graph generation, and measure classification. Considering data availability and the limitations of existing studies, we took Changchun, China, a middle-sized developing city that is seldom reported in existing studies, as the study area. The research results of Changchun (1912–2017) show the road networks sprawled and densified over time, and the evolution patterns depend on the historical periods and urban planning modes. The evolution of network scales exhibits significant correlation; the population in the city is well correlated with the total road length and car ownership. Each network index also presents specific rules. All road networks are small-world networks, and the arterial roads have been consistent over time; however, the core area changes within the adjacent range but is generally far from the old city. More importantly, we found the correlation between structure and function of the urban road networks in terms of the temporal evolution. However, the temporal evolution pattern shows the correlation varies over time or planning modes, which had not been reported

Suggested Citation

  • Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5307-:d:270902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    2. Yang, Zhijie & Chen, Xiaolong, 2018. "Evolution assessment of Shanghai Urban Rail Transit Network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1263-1274.
    3. Lei Kang & Chao Yang & Jeffrey C Peters & Peng Zeng, 2016. "Empirical analysis of road networks evolution patterns in a government-oriented development area," Environment and Planning B, , vol. 43(4), pages 698-715, July.
    4. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    5. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    6. A. Paolo Masucci & Carlos Molinero, 2016. "Robustness and closeness centrality for self-organized and planned cities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-8, February.
    7. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    8. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    9. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    10. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    11. Sybil Derrible & Christopher Kennedy, 2011. "Applications of Graph Theory and Network Science to Transit Network Design," Transport Reviews, Taylor & Francis Journals, vol. 31(4), pages 495-519.
    12. Sehyun Tak & Sunghoon Kim & Young-Ji Byon & Donghoun Lee & Hwasoo Yeo, 2018. "Measuring health of highway network configuration against dynamic Origin-Destination demand network using weighted complex network analysis," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    13. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    14. Wandelt, Sebastian & Sun, Xiaoqian, 2015. "Evolution of the international air transportation country network from 2002 to 2013," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 55-78.
    15. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    16. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    17. Zachary Neal, 2018. "Is the Urban World Small? The Evidence for Small World Structure in Urban Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 615-631, September.
    18. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    19. William L. Garrison & Duane F. Marble, 1964. "Factor‐Analytic Study Of The Connkctivity Of A Transportation Network," Papers in Regional Science, Wiley Blackwell, vol. 12(1), pages 231-238, January.
    20. Angeloudis, Panagiotis & Fisk, David, 2006. "Large subway systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 553-558.
    21. A. Paolo Masucci & Carlos Molinero, 2016. "Robustness and closeness centrality for self-organized and planned cities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-8, February.
    22. Shanjiang Zhu & David Levinson, 2015. "Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    23. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    24. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    25. Emanuele Strano & Matheus Viana & Luciano da Fontoura Costa & Alessio Cardillo & Sergio Porta & Vito Latora, 2013. "Urban Street Networks, a Comparative Analysis of Ten European Cities," Environment and Planning B, , vol. 40(6), pages 1071-1086, December.
    26. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    27. Lin, Jingyi, 2012. "Network analysis of China’s aviation system, statistical and spatial structure," Journal of Transport Geography, Elsevier, vol. 22(C), pages 109-117.
    28. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    29. Rui Ding & Norsidah Ujang & Hussain bin Hamid & Jianjun Wu, 2015. "Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    30. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    31. Feng, Jia & Li, Xiamiao & Mao, Baohua & Xu, Qi & Bai, Yun, 2017. "Weighted complex network analysis of the Beijing subway system: Train and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 213-223.
    32. Yasir Tariq Mohmand & Aihu Wang, 2013. "Weighted Complex Network Analysis of Pakistan Highways," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-5, November.
    33. Parthasarathi, Pavithra, 2014. "Network structure and metropolitan mobility," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 153-168.
    34. Sergio Porta & Paolo Crucitti & Vito Latora, 2006. "The Network Analysis of Urban Streets: A Primal Approach," Environment and Planning B, , vol. 33(5), pages 705-725, October.
    35. Zhang, Mingyuan & Liang, Boyuan & Wang, Sheng & Perc, Matjaž & Du, Wenbo & Cao, Xianbin, 2018. "Analysis of flight conflicts in the Chinese air route network," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 97-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    2. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    3. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    4. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    5. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    7. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    8. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    9. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    10. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    11. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    12. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    13. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    14. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    15. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    16. Wei, Sheng & Zheng, Wei & Wang, Lei, 2021. "Understanding the configuration of bus networks in urban China from the perspective of network types and administrative division effect," Transport Policy, Elsevier, vol. 104(C), pages 1-17.
    17. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    18. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    19. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    20. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5307-:d:270902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.