IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v55y2023ipbs1544612323003689.html
   My bibliography  Save this article

Dynamic co-movement in major commodity markets during crisis periods: A wavelet local multiple correlation analysis

Author

Listed:
  • Bouri, Elie
  • Nekhili, Ramzi
  • Todorova, Neda

Abstract

We study time-scale co-movement of returns and implied volatilities of oil, gold, wheat, and copper in a multivariate setting using the wavelet local multiple correlation (WLMC) approach. Daily data cover January 03, 2007 – August 08, 2022, including the global financial crisis, COVID-19 pandemic, and Russia-Ukraine war. The results show that the correlations across the commodities are heterogeneous, less stable in the short-term, and more pronounced in the long-term, and vary in sign and magnitude. Despite market instability, contagion is not clearly seen in either return or volatility, reflecting noise trading and the importance of the individual characteristics of commodities.

Suggested Citation

  • Bouri, Elie & Nekhili, Ramzi & Todorova, Neda, 2023. "Dynamic co-movement in major commodity markets during crisis periods: A wavelet local multiple correlation analysis," Finance Research Letters, Elsevier, vol. 55(PB).
  • Handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s1544612323003689
    DOI: 10.1016/j.frl.2023.103996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323003689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahel, Eric & Marrouch, Walid & Gaudet, Gérard, 2013. "The economics of oil, biofuel and food commodities," Resource and Energy Economics, Elsevier, vol. 35(4), pages 599-617.
    2. Vacha, Lukas & Barunik, Jozef, 2012. "Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis," Energy Economics, Elsevier, vol. 34(1), pages 241-247.
    3. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    4. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    5. Nekhili, Ramzi & Mensi, Walid & Vo, Xuan Vinh, 2021. "Multiscale spillovers and connectedness between gold, copper, oil, wheat and currency markets," Resources Policy, Elsevier, vol. 74(C).
    6. Ilyes Abid & Abderrazak Dhaoui & Stéphane Goutte & Khaled Guesmi, 2020. "Hedging and diversification across commodity assets," Applied Economics, Taylor & Francis Journals, vol. 52(23), pages 2472-2492, May.
    7. Erten, Bilge & Ocampo, José Antonio, 2013. "Super Cycles of Commodity Prices Since the Mid-Nineteenth Century," World Development, Elsevier, vol. 44(C), pages 14-30.
    8. Fernández-Macho, Javier, 2018. "Time-localized wavelet multiple regression and correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1226-1238.
    9. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    10. Bouri, Elie & Nekhili, Ramzi & Kinateder, Harald & Choudhury, Tonmoy, 2023. "Expected inflation and U.S. stock sector indices: A dynamic time-scale tale from inflationary and deflationary crisis periods," Finance Research Letters, Elsevier, vol. 55(PA).
    11. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    12. Nekhili, Ramzi & Sultan, Jahangir & Mensi, Walid, 2021. "Co-movements among precious metals and implications for portfolio management: A multivariate wavelet-based dynamic analysis," Resources Policy, Elsevier, vol. 74(C).
    13. Neil Kellard & Paul Newbold & Tony Rayner & Christine Ennew, 1999. "The relative efficiency of commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 413-432, June.
    14. Bentes, Sónia R., 2022. "On the stylized facts of precious metals’ volatility: A comparative analysis of pre- and during COVID-19 crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    15. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    16. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2019. "Oil price shocks and U.S. economic activity," Energy Policy, Elsevier, vol. 129(C), pages 89-99.
    17. Karaki, Mohamad B., 2017. "Nonlinearities in the response of real GDP to oil price shocks," Economics Letters, Elsevier, vol. 161(C), pages 146-148.
    18. Figuerola-Ferretti, Isabel & Gonzalo, Jesús, 2010. "Modelling and measuring price discovery in commodity markets," Journal of Econometrics, Elsevier, vol. 158(1), pages 95-107, September.
    19. Dervis Kirikkaleli & Hasan Güngör, 2021. "Co-movement of commodity price indexes and energy price index: a wavelet coherence approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    20. Gozgor, Giray & Khalfaoui, Rabeh & Yarovaya, Larisa, 2023. "Global supply chain pressure and commodity markets: Evidence from multiple wavelet and quantile connectedness analyses," Finance Research Letters, Elsevier, vol. 54(C).
    21. Zaghum Umar & Adam Zaremba & Dennis Olson, 2022. "Seven centuries of commodity co-movement: a wavelet analysis approach," Applied Economics Letters, Taylor & Francis Journals, vol. 29(4), pages 355-359, February.
    22. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    23. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2017. "Where do jobs go when oil prices drop?," Energy Economics, Elsevier, vol. 64(C), pages 469-482.
    24. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
    25. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    26. Rehman, Mobeen Ur & Bouri, Elie & Eraslan, Veysel & Kumar, Satish, 2019. "Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    27. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    3. Wang, Yihan & Bouri, Elie & Fareed, Zeeshan & Dai, Yuhui, 2022. "Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine," Finance Research Letters, Elsevier, vol. 49(C).
    4. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    5. Kamal, Elham & Bouri, Elie, 2023. "Dependence structure among rare earth and financial markets: A multiscale-vine copula approach," Resources Policy, Elsevier, vol. 83(C).
    6. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    7. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    8. Bechir Raggad & Elie Bouri, 2023. "Quantile Dependence between Crude Oil Returns and Implied Volatility: Evidence from Parametric and Nonparametric Tests," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    9. Bouoiyour, Jamal & Gauthier, Marie & Bouri, Elie, 2023. "Which is leading: Renewable or brown energy assets?," Energy Economics, Elsevier, vol. 117(C).
    10. Bilgili, Faik & Koçak, Emrah & Kuşkaya, Sevda & Bulut, Ümit, 2020. "Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis," Energy, Elsevier, vol. 213(C).
    11. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    12. Shahzad, Umer & Mohammed, Kamel Si & Tiwari, Sunil & Nakonieczny, Joanna & Nesterowicz, Renata, 2023. "Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective," Resources Policy, Elsevier, vol. 80(C).
    13. Zhang, Hongwei & Jin, Chen & Bouri, Elie & Gao, Wang & Xu, Yahua, 2023. "Realized higher-order moments spillovers between commodity and stock markets: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 30(C).
    14. Monge, Manuel & Gil-Alana, Luis A., 2021. "Lithium industry and the U.S. crude oil prices. A fractional cointegration VAR and a Continuous Wavelet Transform analysis," Resources Policy, Elsevier, vol. 72(C).
    15. Ozge Kandemir Kocaaslan, 2021. "Are the responses of output and investment to oil price shocks asymmetric?: The case of an oil-importing small open economy," Empirical Economics, Springer, vol. 61(5), pages 2501-2516, November.
    16. Guy Assaker & Wassim Shahin, 2022. "What Drives Faculty Publication Citations in the Business Field? Empirical Results from an AACSB Middle Eastern Institution," Publications, MDPI, vol. 10(4), pages 1-29, November.
    17. Choi, Sun-Yong, 2022. "Volatility spillovers among Northeast Asia and the US: Evidence from the global financial crisis and the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 179-193.
    18. Asadi, Mehrad & Roubaud, David & Tiwari, Aviral Kumar, 2022. "Volatility spillovers amid crude oil, natural gas, coal, stock, and currency markets in the US and China based on time and frequency domain connectedness," Energy Economics, Elsevier, vol. 109(C).
    19. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    20. Juncal Cunado & David Gabauer & Rangan Gupta, 2021. "Realized Volatility Spillovers between Energy and Metal Markets: A Time-Varying Connectedness Approach," Working Papers 202180, University of Pretoria, Department of Economics.

    More about this item

    Keywords

    Returns and implied volatility; Wavelet local multiple correlation (WLMC); Commodities; Crude oil; Gold; COVID-19; Russia-Ukraine war;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s1544612323003689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.