IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp722-734.html
   My bibliography  Save this article

Impact of the phase out of French nuclear reactors on the Italian power sector

Author

Listed:
  • Bianco, Vincenzo
  • Scarpa, Federico

Abstract

The present paper proposes an analysis concerning the impact of the reduction of the net electricity flow between France and Italy due to the phase out of French nuclear power plants. The analysis is performed by using a bid stack model which offers an approximate, but reliable representation of the Italian power system, as shown by extensive validation on historical data.

Suggested Citation

  • Bianco, Vincenzo & Scarpa, Federico, 2018. "Impact of the phase out of French nuclear reactors on the Italian power sector," Energy, Elsevier, vol. 150(C), pages 722-734.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:722-734
    DOI: 10.1016/j.energy.2018.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/210 is not listed on IDEAS
    2. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
    3. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    4. Llorente-Saguer, Aniol & Zultan, Ro’i, 2017. "Collusion and information revelation in auctions," European Economic Review, Elsevier, vol. 95(C), pages 84-102.
    5. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Deane, J.P. & Chiodi, Alessandro & Gargiulo, Maurizio & Ó Gallachóir, Brian P., 2012. "Soft-linking of a power systems model to an energy systems model," Energy, Elsevier, vol. 42(1), pages 303-312.
    8. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    9. Jean Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Cambridge Working Papers in Economics 1354, Faculty of Economics, University of Cambridge.
    10. Martin D. D. Evans & Dagfinn Rime, 2017. "Order Flow Information and Spot Rate Dynamics," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 17, pages 725-776, World Scientific Publishing Co. Pte. Ltd..
    11. Becker, S. & Rodriguez, R.A. & Andresen, G.B. & Schramm, S. & Greiner, M., 2014. "Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply," Energy, Elsevier, vol. 64(C), pages 404-418.
    12. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    13. ., 2017. "Whistleblowers as information sources," Chapters, in: Organizational Opportunity and Deviant Behavior, chapter 7, pages 123-134, Edward Elgar Publishing.
    14. Pusnik, M. & Al-Mansour, F. & Sucic, B. & Cesen, M., 2017. "Trends and prospects of energy efficiency development in Slovenian industry," Energy, Elsevier, vol. 136(C), pages 52-62.
    15. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    16. Thellufsen, Jakob Zinck & Lund, Henrik, 2017. "Cross-border versus cross-sector interconnectivity in renewable energy systems," Energy, Elsevier, vol. 124(C), pages 492-501.
    17. Mahbub, Md Shahriar & Viesi, Diego & Crema, Luigi, 2016. "Designing optimized energy scenarios for an Italian Alpine valley: the case of Giudicarie Esteriori," Energy, Elsevier, vol. 116(P1), pages 236-249.
    18. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    19. Martin D. D. Evans & Richard K. Lyons, 2017. "Informational Integration and FX Trading," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 7, pages 291-324, World Scientific Publishing Co. Pte. Ltd..
    20. Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Grupo Estudios del Trabajo, 2017. "Informe Sociolaboral del Partido de General Pueyrredon," Nülan. Deposited Documents 2752, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    21. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    22. Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Grupo Estudios del Trabajo, 2017. "Informe Sociolaboral del Partido de General Pueyrredon," Nülan. Deposited Documents 2837, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    23. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    24. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    25. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    26. Deane, J.P. & Driscoll, Á. & Gallachóir, B.P Ó, 2015. "Quantifying the impacts of national renewable electricity ambitions using a North–West European electricity market model," Renewable Energy, Elsevier, vol. 80(C), pages 604-609.
    27. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    28. Millicent Chang & Xiaolin Qian & Jing Yu & Yvonne See, 2017. "Does director trading change the information environment?," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 205-229, May.
    29. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    30. Vorushylo, I. & Keatley, P. & Hewitt, NJ, 2016. "Most promising flexible generators for the wind dominated market," Energy Policy, Elsevier, vol. 96(C), pages 564-575.
    31. Pavičević, Matija & Novosel, Tomislav & Pukšec, Tomislav & Duić, Neven, 2017. "Hourly optimization and sizing of district heating systems considering building refurbishment – Case study for the city of Zagreb," Energy, Elsevier, vol. 137(C), pages 1264-1276.
    32. ., 2017. "The Global Information Infrastructure System," Chapters, in: Global Infrastructure Networks, chapter 4, pages 108-154, Edward Elgar Publishing.
    33. Nor Ahmad Khamzah & Sarah Md. Sah & Norhayati Hussin, 2017. "Information Management in Education," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(8), pages 743-749, August.
    34. Maïzi, Nadia & Assoumou, Edi, 2014. "Future prospects for nuclear power in France," Applied Energy, Elsevier, vol. 136(C), pages 849-859.
    35. Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Grupo Estudios del Trabajo, 2017. "Informe Sociolaboral del Partido de General Pueyrredon," Nülan. Deposited Documents 2626, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    36. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zimmermann, Florian & Keles, Dogan, 2023. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Energy Policy, Elsevier, vol. 173(C).
    2. Hong, Taehoon & Jeong, Kwangbok & Koo, Choongwan, 2018. "An optimized gene expression programming model for forecasting the national CO2 emissions in 2030 using the metaheuristic algorithms," Applied Energy, Elsevier, vol. 228(C), pages 808-820.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    5. Zimmermann, Florian & Keles, Dogan, 2022. "State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects," Working Paper Series in Production and Energy 64, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Bianco, Vincenzo & Cascetta, Furio & Marino, Alfonso & Nardini, Sergio, 2019. "Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues," Energy, Elsevier, vol. 170(C), pages 120-130.
    7. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2021. "Pathways to electric mobility integration in the Italian automotive sector," Energy, Elsevier, vol. 221(C).
    8. Beltrami, Filippo & Fontini, Fulvio & Grossi, Luigi, 2021. "The value of carbon emission reduction induced by Renewable Energy Sources in the Italian power market," Ecological Economics, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    4. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    5. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
    6. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    7. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    8. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    9. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    10. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    11. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    12. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    13. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    14. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    16. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    17. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    19. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:722-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.