IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v97y2016icp27-38.html
   My bibliography  Save this article

Innovation in the energy sector – The role of fossil fuels and developing economies

Author

Listed:
  • Brutschin, Elina
  • Fleig, Andreas

Abstract

This paper analyzes the effects of fossil fuel rents on R&D expenditures and patent grants in the field of energy-related technology. We argue that an increasing share of fossil fuel rents lessens the innovation of new energy technologies. We consider a sample of countries beyond the common selection of OECD members and investigate innovation efforts in the energy sector of 116 countries from 1980 to 2012. We observe the gradually growing influence of resource-abundant countries on global R&D expenditures and find that increasing fossil fuel rents have a negative effect on patent grants. This study contributes to the ongoing debate concerning the potential effects of resource abundance. More importantly, it increases our understanding of innovation activities within the energy sector and further underscores the need to extend future research to countries that have not been taken into account thus far.

Suggested Citation

  • Brutschin, Elina & Fleig, Andreas, 2016. "Innovation in the energy sector – The role of fossil fuels and developing economies," Energy Policy, Elsevier, vol. 97(C), pages 27-38.
  • Handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:27-38
    DOI: 10.1016/j.enpol.2016.06.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516303470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.06.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    2. Hayo, Bernd & Kutan, Ali M. & Neuenkirch, Matthias, 2010. "The impact of U.S. central bank communication on European and pacific equity markets," Economics Letters, Elsevier, vol. 108(2), pages 172-174, August.
    3. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    4. Wooldridge, Jeffrey M., 1999. "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, Elsevier, vol. 90(1), pages 77-97, May.
    5. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    6. Michael A. Clemens & Steven Radelet & Rikhil R. Bhavnani & Samuel Bazzi, 2012. "Counting Chickens when they Hatch: Timing and the Effects of Aid on Growth," Economic Journal, Royal Economic Society, vol. 122(561), pages 590-617, June.
    7. Carlsson, Bo & Jacobsson, Staffan & Holmen, Magnus & Rickne, Annika, 2002. "Innovation systems: analytical and methodological issues," Research Policy, Elsevier, vol. 31(2), pages 233-245, February.
    8. Jeffrey D. Sachs & Andrew M. Warner, 1995. "Natural Resource Abundance and Economic Growth," NBER Working Papers 5398, National Bureau of Economic Research, Inc.
    9. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    10. Frederick van der Ploeg, 2011. "Natural Resources: Curse or Blessing?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 366-420, June.
    11. William Robert Reed, 2015. "On the Practice of Lagging Variables to Avoid Simultaneity," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(6), pages 897-905, December.
    12. Frankel, Jeffrey A., 2010. "The Natural Resource Curse: A Survey," Scholarly Articles 4454156, Harvard Kennedy School of Government.
    13. Baccini, Leonardo & Urpelainen, Johannes, 2012. "Legislative fractionalization and partisan shifts to the left increase the volatility of public energy R&D expenditures," LSE Research Online Documents on Economics 45571, London School of Economics and Political Science, LSE Library.
    14. Beck, Nathaniel & Katz, Jonathan N., 1995. "What To Do (and Not to Do) with Time-Series Cross-Section Data," American Political Science Review, Cambridge University Press, vol. 89(3), pages 634-647, September.
    15. Huang, Cui & Su, Jun & Zhao, Xiaoyuan & Sui, Jigang & Ru, Peng & Zhang, Hanwei & Wang, Xin, 2012. "Government funded renewable energy innovation in China," Energy Policy, Elsevier, vol. 51(C), pages 121-127.
    16. David Popp, 2016. "Economic analysis of scientific publications and implications for energy research and development," Nature Energy, Nature, vol. 1(4), pages 1-8, April.
    17. Zoltan J. Acs & Luc Anselin & Attila Varga, 2008. "Patents and Innovation Counts as Measures of Regional Production of New Knowledge," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 11, pages 135-151, Edward Elgar Publishing.
    18. David Popp, 2003. "Lessons from Patents: Using Patents To Measure Technological Change in Environmental Models," NBER Working Papers 9978, National Bureau of Economic Research, Inc.
    19. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    20. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    21. John Alic & Daniel Sarewitz & Charles Weiss & William Bonvillian, 2010. "A new strategy for energy innovation," Nature, Nature, vol. 466(7304), pages 316-317, July.
    22. Anadón, Laura Díaz, 2012. "Missions-oriented RD&D institutions in energy between 2000 and 2010: A comparative analysis of China, the United Kingdom, and the United States," Research Policy, Elsevier, vol. 41(10), pages 1742-1756.
    23. Elissaios Papyrakis, 2011. "Resource windfalls, innovation, and growth," Journal of Economic Policy Reform, Taylor and Francis Journals, vol. 14(4), pages 301-312.
    24. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    25. Lund, P.D., 2009. "Effects of energy policies on industry expansion in renewable energy," Renewable Energy, Elsevier, vol. 34(1), pages 53-64.
    26. Mary M. Crossan & Marina Apaydin, 2010. "A Multi‐Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature," Journal of Management Studies, Wiley Blackwell, vol. 47(6), pages 1154-1191, September.
    27. Colgan, Jeff, 2011. "Oil and resource-backed aggression," Energy Policy, Elsevier, vol. 39(3), pages 1669-1676, March.
    28. Stahlecker, Peter & Trenkler, Gotz, 1993. "Some Further Results on the Use of Proxy Variables in Prediction," The Review of Economics and Statistics, MIT Press, vol. 75(4), pages 707-711, November.
    29. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    30. Winskel, Mark & Markusson, Nils & Jeffrey, Henry & Candelise, Chiara & Dutton, Geoff & Howarth, Paul & Jablonski, Sophie & Kalyvas, Christos & Ward, David, 2014. "Learning pathways for energy supply technologies: Bridging between innovation studies and learning rates," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 96-114.
    31. Baccini, Leonardo & Urpelainen, Johannes, 2012. "Legislative fractionalization and partisan shifts to the left increase the volatility of public energy R&D expenditures," Energy Policy, Elsevier, vol. 46(C), pages 49-57.
    32. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    33. Elissaios Papyrakis, 2011. "Resource windfalls, innovation, and growth," Journal of Economic Policy Reform, Taylor & Francis Journals, vol. 14(4), pages 301-312, December.
    34. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    35. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    36. Gary Jefferson & Bai Huamao & Guan Xiaojing & Yu Xiaoyun, 2006. "R&D Performance in Chinese industry," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(4-5), pages 345-366.
    37. Lu, Bingbin, 2013. "Expedited patent examination for green inventions: Developing countries' policy choices," Energy Policy, Elsevier, vol. 61(C), pages 1529-1538.
    38. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    39. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    40. Wiesenthal, Tobias & Leduc, Guillaume & Haegeman, Karel & Schwarz, Hans-Günther, 2012. "Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies," Research Policy, Elsevier, vol. 41(1), pages 116-131.
    41. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    42. Kondo, Masayuki, 1999. "R&D dynamics of creating patents in the Japanese industry," Research Policy, Elsevier, vol. 28(6), pages 587-600, August.
    43. Sachs, Jeffrey D. & Warner, Andrew M., 2001. "The curse of natural resources," European Economic Review, Elsevier, vol. 45(4-6), pages 827-838, May.
    44. Leo Urban Wangler, 2013. "Renewables and innovation: did policy induced structural change in the energy sector effect innovation in green technologies?," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(2), pages 211-237, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
    2. Ioana Ancuta Iancu & Patrick Hendrick & Dan Doru Micu & Stefan Dragos Cirstea, 2023. "The Demand for Energy Imports from Non-Renewable Resources in EU-27 Economy," Energies, MDPI, vol. 16(13), pages 1-18, July.
    3. Marek Szarucki & Radosław Rybkowski & Justyna Bugaj & Klaudia Bracio, 2022. "A Comprehensive Review of Research Approaches in the Energy Sector: A Management Sciences Perspective," Energies, MDPI, vol. 15(22), pages 1-21, November.
    4. Ioana-Ancuta Iancu & Patrick Hendrick & Dan Doru Micu & Stefan Dragos Cirstea, 2023. "The Demand for Energy Imports from Non-Renewable Resources in EU-27 Economy," ULB Institutional Repository 2013/362698, ULB -- Universite Libre de Bruxelles.
    5. Brutschin, Elina & Fleig, Andreas, 2018. "Geopolitically induced investments in biofuels," Energy Economics, Elsevier, vol. 74(C), pages 721-732.
    6. Elena Shadrina, 2020. "Non-Hydropower Renewable Energy in Central Asia: Assessment of Deployment Status and Analysis of Underlying Factors," Energies, MDPI, vol. 13(11), pages 1-29, June.
    7. Raphael Bointner & Simon Pezzutto & Gianluca Grilli & Wolfram Sparber, 2016. "Financing Innovations for the Renewable Energy Transition in Europe," Energies, MDPI, vol. 9(12), pages 1-16, November.
    8. Kalon Si & Xin Long Xu & Hsing Hung Chen, 2020. "Examining the Interactive Endogeneity Relationship between R&D Investment and Financially Sustainable Performance: Comparison from Different Types of Energy Enterprises," Energies, MDPI, vol. 13(9), pages 1-15, May.
    9. Inkyoung Sun & So Young Kim, 2017. "Energy R&D towards Sustainability: A Panel Analysis of Government Budget for Energy R&D in OECD Countries (1974–2012)," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    10. Weng, Qingqing & Xu, He, 2018. "A review of China’s carbon trading market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 613-619.
    11. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    12. Elyas Abdulahi Mohamued & Masood Ahmed & Paula Pypłacz & Katarzyna Liczmańska-Kopcewicz & Muhammad Asif Khan, 2021. "Global Oil Price and Innovation for Sustainability: The Impact of R&D Spending, Oil Price and Oil Price Volatility on GHG Emissions," Energies, MDPI, vol. 14(6), pages 1-18, March.
    13. Buchalik, Ryszard & Nowak, Grzegorz & Nowak, Iwona, 2021. "Mathematical model of a thermoelectric system based on steady- and rapid-state measurements," Applied Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    2. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    4. Osiris Jorge Parcero & Elissaios Papyrakis, 2024. "Income inequality and the oil resource curse," Papers 2401.04046, arXiv.org.
    5. Juan Francisco De Negri & Simon Pezzutto & Sonia Gantioler & David Moser & Wolfram Sparber, 2020. "A Comprehensive Analysis of Public and Private Funding for Photovoltaics Research and Development in the European Union, Norway, and Turkey," Energies, MDPI, vol. 13(11), pages 1-23, May.
    6. Raphael Bointner & Simon Pezzutto & Gianluca Grilli & Wolfram Sparber, 2016. "Financing Innovations for the Renewable Energy Transition in Europe," Energies, MDPI, vol. 9(12), pages 1-16, November.
    7. Parcero, Osiris J. & Papyrakis, Elissaios, 2016. "Income inequality and the oil resource curse," Resource and Energy Economics, Elsevier, vol. 45(C), pages 159-177.
    8. Urpelainen, Johannes, 2011. "Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors," Energy Policy, Elsevier, vol. 39(9), pages 5638-5646, September.
    9. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    10. Brutschin, Elina & Fleig, Andreas, 2018. "Geopolitically induced investments in biofuels," Energy Economics, Elsevier, vol. 74(C), pages 721-732.
    11. Bongsuk Sung & Woo-Yong Song, 2017. "Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector," Energies, MDPI, vol. 10(12), pages 1-18, December.
    12. Raphael Bointner & Simon Pezzutto & Wolfram Sparber, 2016. "Scenarios of public energy research and development expenditures: financing energy innovation in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 470-488, July.
    13. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    14. Ben-Salha, Ousama & Dachraoui, Hajer & Sebri, Maamar, 2021. "Natural resource rents and economic growth in the top resource-abundant countries: A PMG estimation," Resources Policy, Elsevier, vol. 74(C).
    15. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    16. Omar H. M. N. Bashar & Omar K. M. R. Bashar, 2020. "Resource abundance, financial crisis and economic growth: did resource‐rich countries fare better during the global financial crisis?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), pages 376-395, April.
    17. Mehrdad Vahabi, 2017. "A critical survey of the resource curse literature through the appropriability lens," CEPN Working Papers hal-01583559, HAL.
    18. Konte, Maty & Vincent, Rose Camille, 2021. "Mining and quality of public services: The role of local governance and decentralization," World Development, Elsevier, vol. 140(C).
    19. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    20. Yilanci, Veli & Aslan, Murat & Ozgur, Onder, 2021. "Disaggregated analysis of the curse of natural resources in most natural resource-abundant countries," Resources Policy, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:97:y:2016:i:c:p:27-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.