IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v63y2013icp197-206.html
   My bibliography  Save this article

Adapting overhead lines to climate change: Are dynamic ratings the answer?

Author

Listed:
  • Cradden, Lucy C.
  • Harrison, Gareth P.

Abstract

Thermal ratings of overhead lines (OHL) are determined by the current being carried and ambient climatic conditions. Higher temperatures as a result of climate change will give rise to lower ratings, and thus a reduction in current-carrying capacity across the electricity network. Coupled with demand growth and installation of renewable generation on weaker sections of the network, this could necessitate costly reinforcements and upgrades. Previous UK-based work applying a subset of data from the UK Climate Projections model (UKCP09) has indeed indicated likely reductions in the steady-state OHL ratings under worst-case temperature increases. In the present work, time series data from the full UKCP09 probabilistic climate change modelling framework, including an additional algorithm to incorporate hourly wind conditions, is applied to OHL ratings. Rather than focus purely on worst-case conditions, the potential for an increased risk of exceeding nominal ratings values on thermally constrained OHL is analysed. It is shown that whilst there is a small increase in risk under future climate change scenarios, the overall risk remains low. The model further demonstrates that widespread use of real-time dynamic rating systems are likely to represent the most cost-efficient adaptation method for lines which are frequently thermally constrained.

Suggested Citation

  • Cradden, Lucy C. & Harrison, Gareth P., 2013. "Adapting overhead lines to climate change: Are dynamic ratings the answer?," Energy Policy, Elsevier, vol. 63(C), pages 197-206.
  • Handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:197-206
    DOI: 10.1016/j.enpol.2013.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sailor, David J. & Smith, Michael & Hart, Melissa, 2008. "Climate change implications for wind power resources in the Northwest United States," Renewable Energy, Elsevier, vol. 33(11), pages 2393-2406.
    2. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    3. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
    2. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    2. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    3. Gonçalves-Ageitos, María & Barrera-Escoda, Antoni & Baldasano, Jose M. & Cunillera, Jordi, 2015. "Modelling wind resources in climate change scenarios in complex terrains," Renewable Energy, Elsevier, vol. 76(C), pages 670-678.
    4. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    5. Alonzo, Bastien & Ringkjob, Hans-Kristian & Jourdier, Benedicte & Drobinski, Philippe & Plougonven, Riwal & Tankov, Peter, 2017. "Modelling the variability of the wind energy resource on monthly and seasonal timescales," Renewable Energy, Elsevier, vol. 113(C), pages 1434-1446.
    6. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    7. Pereira de Lucena, André Frossard & Szklo, Alexandre Salem & Schaeffer, Roberto & Dutra, Ricardo Marques, 2010. "The vulnerability of wind power to climate change in Brazil," Renewable Energy, Elsevier, vol. 35(5), pages 904-912.
    8. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    9. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    10. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    11. Wachsmuth, J. & Blohm, A. & Gößling-Reisemann, S. & Eickemeier, T. & Ruth, M. & Gasper, R. & Stührmann, S., 2013. "How will renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany," Energy, Elsevier, vol. 58(C), pages 192-201.
    12. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271, December.
    13. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    14. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    15. Wang, Meina & Ullrich, Paul & Millstein, Dev, 2018. "The future of wind energy in California: Future projections with the Variable-Resolution CESM," Renewable Energy, Elsevier, vol. 127(C), pages 242-257.
    16. Rosende, Catalina & Sauma, Enzo & Harrison, Gareth P., 2019. "Effect of Climate Change on wind speed and its impact on optimal power system expansion planning: The case of Chile," Energy Economics, Elsevier, vol. 80(C), pages 434-451.
    17. Simon Watson, 2014. "Quantifying the variability of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 330-342, July.
    18. Alonzo, Bastien & Tankov, Peter & Drobinski, Philippe & Plougonven, Riwal, 2020. "Probabilistic wind forecasting up to three months ahead using ensemble predictions for geopotential height," International Journal of Forecasting, Elsevier, vol. 36(2), pages 515-530.
    19. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
    20. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:197-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.