IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v150y2021ics0301421520308302.html
   My bibliography  Save this article

Estimating the impacts of climate change on electricity supply infrastructure: A case study of China

Author

Listed:
  • Chen, Hao
  • Liu, Simin
  • Liu, Qiufeng
  • Shi, Xueli
  • Wei, Wendong
  • Han, Rong
  • Küfeoğlu, Sinan

Abstract

Understanding the impacts of climate change on electricity supply infrastructure (ESI) is important to maintain a reliable power supply. Nonetheless, most existing studies focus on the physical impacts rather than the economic impacts, failing to provide references for the cost-benefit analysis of different abatement policies and measures. With this motivation, this study firstly employs a downscaled climate system model to project temperature paths in the future. Then, an integrated model is established to quantify both physical and economic impacts of long-term future temperature rise on the existing ESI components. Finally, the maximum climate-attributable impacts on China's ESI are assessed for the period from 2018 to 2099. Our major findings are that: (1) 10.2% of the generator ratings, 17.8% of the transmission and distribution line ratings and 10.0% of the transformer ratings are at risk of outage from expected climate change effects. (2) Around $258 billion of the existing ESI assets are at risk of outage due to the future surface temperature rise, representing 14.2% of the ESI assets in 2017. (3) The impacts of climate change on ESI vary substantially among different provinces and among different infrastructure components. These obtained results can provide important guidance for the mitigation and adaption strategies for the climate change impacts on the electricity sector.

Suggested Citation

  • Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:enepol:v:150:y:2021:i:c:s0301421520308302
    DOI: 10.1016/j.enpol.2020.112119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520308302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.112119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pollitt, M. & Yang, C-H. & Chen, H., 2017. "Reforming the Chinese Electricity Supply Sector: Lessons from International Experience," Cambridge Working Papers in Economics 1713, Faculty of Economics, University of Cambridge.
    2. Wang, Bing & Liang, Xiao-Jie & Zhang, Hao & Wang, Lu & Wei, Yi-Ming, 2014. "Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model," Energy Policy, Elsevier, vol. 65(C), pages 701-707.
    3. Arrieta, Felipe R. Ponce & Lora, Electo E. Silva, 2005. "Influence of ambient temperature on combined-cycle power-plant performance," Applied Energy, Elsevier, vol. 80(3), pages 261-272, March.
    4. Koch, Hagen & Vögele, Stefan & Hattermann, Fred & Huang, Shaochun, 2014. "Hydro-climatic conditions and thermoelectric electricity generation – Part II: Model application to 17 nuclear power plants in Germany," Energy, Elsevier, vol. 69(C), pages 700-707.
    5. Pašičko, Robert & Branković, Čedo & Šimić, Zdenko, 2012. "Assessment of climate change impacts on energy generation from renewable sources in Croatia," Renewable Energy, Elsevier, vol. 46(C), pages 224-231.
    6. Ariel Miara & Jordan E. Macknick & Charles J. Vörösmarty & Vincent C. Tidwell & Robin Newmark & Balazs Fekete, 2017. "Climate and water resource change impacts and adaptation potential for US power supply," Nature Climate Change, Nature, vol. 7(11), pages 793-798, November.
    7. Damerau, Kerstin & Williges, Keith & Patt, Anthony G. & Gauché, Paul, 2011. "Costs of reducing water use of concentrating solar power to sustainable levels: Scenarios for North Africa," Energy Policy, Elsevier, vol. 39(7), pages 4391-4398, July.
    8. Wachsmuth, J. & Blohm, A. & Gößling-Reisemann, S. & Eickemeier, T. & Ruth, M. & Gasper, R. & Stührmann, S., 2013. "How will renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany," Energy, Elsevier, vol. 58(C), pages 192-201.
    9. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    10. Chuang, Chia-Chin & Sue, Deng-Chern, 2005. "Performance effects of combined cycle power plant with variable condenser pressure and loading," Energy, Elsevier, vol. 30(10), pages 1793-1801.
    11. Hao Chen, Chi Kong Chyong, Zhifu Mi, and Yi-Ming Wei, 2020. "Reforming the Operation Mechanism of Chinese Electricity System: Benefits, Challenges and Possible Solutions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 219-246.
    12. Cradden, Lucy C. & Harrison, Gareth P., 2013. "Adapting overhead lines to climate change: Are dynamic ratings the answer?," Energy Policy, Elsevier, vol. 63(C), pages 197-206.
    13. Jeremy Martinich & Allison Crimmins, 2019. "Climate damages and adaptation potential across diverse sectors of the United States," Nature Climate Change, Nature, vol. 9(5), pages 397-404, May.
    14. Boehlert, Brent & Strzepek, Kenneth M. & Gebretsadik, Yohannes & Swanson, Richard & McCluskey, Alyssa & Neumann, James E. & McFarland, James & Martinich, Jeremy, 2016. "Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation," Applied Energy, Elsevier, vol. 183(C), pages 1511-1519.
    15. Jeannette Sieber, 2013. "Impacts of, and adaptation options to, extreme weather events and climate change concerning thermal power plants," Climatic Change, Springer, vol. 121(1), pages 55-66, November.
    16. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    17. Yue Zhang & Alun Gu & Hui Lu & Wei Wang, 2017. "Hydropower Generation Vulnerability in the Yangtze River in China under Climate Change Scenarios: Analysis Based on the WEAP Model," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    18. Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 149-168.
    19. Gaetani, Marco & Huld, Thomas & Vignati, Elisabetta & Monforti-Ferrario, Fabio & Dosio, Alessandro & Raes, Frank, 2014. "The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 706-716.
    20. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    21. Dowling, Paul, 2013. "The impact of climate change on the European energy system," Energy Policy, Elsevier, vol. 60(C), pages 406-417.
    22. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    23. Lu Liu & Mohamad Hejazi & Hongyi Li & Barton Forman & Xiao Zhang, 2017. "Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations," Nature Energy, Nature, vol. 2(8), pages 1-5, August.
    24. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    25. Pereira de Lucena, André Frossard & Szklo, Alexandre Salem & Schaeffer, Roberto & Dutra, Ricardo Marques, 2010. "The vulnerability of wind power to climate change in Brazil," Renewable Energy, Elsevier, vol. 35(5), pages 904-912.
    26. David Ward, 2013. "The effect of weather on grid systems and the reliability of electricity supply," Climatic Change, Springer, vol. 121(1), pages 103-113, November.
    27. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    28. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    29. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    30. Anthony Patt & Stefan Pfenninger & Johan Lilliestam, 2013. "Vulnerability of solar energy infrastructure and output to climate change," Climatic Change, Springer, vol. 121(1), pages 93-102, November.
    31. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hao & Chen, Xi & Niu, Jinye & Xiang, Mengyu & He, Weijun & Küfeoğlu, Sinan, 2021. "Estimating the marginal cost of reducing power outage durations in China: A parametric distance function approach," Energy Policy, Elsevier, vol. 155(C).
    2. Boyan Zhang & Mingming Wang, 2021. "How Will the Improvements of Electricity Supply Quality in Poor Regions Reduce the Regional Economic Gaps? A Case Study of China," Energies, MDPI, vol. 14(12), pages 1-18, June.
    3. Doan, Bao & Vo, Duc Hong & Pham, Huy, 2023. "The net economic benefits of power plants: International evidence," Energy Policy, Elsevier, vol. 175(C).
    4. Sechindra Vallury & Bryan Leonard, 2022. "Canals, climate, and corruption: The provisioning of public infrastructure under uncertainty," Economics and Politics, Wiley Blackwell, vol. 34(1), pages 221-252, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    2. Handayani, Kamia & Filatova, Tatiana & Krozer, Yoram & Anugrah, Pinto, 2020. "Seeking for a climate change mitigation and adaptation nexus: Analysis of a long-term power system expansion," Applied Energy, Elsevier, vol. 262(C).
    3. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    4. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    5. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    6. Kamia Handayani & Tatiana Filatova & Yoram Krozer, 2019. "The Vulnerability of the Power Sector to Climate Variability and Change: Evidence from Indonesia," Energies, MDPI, vol. 12(19), pages 1-25, September.
    7. Gaetani, Marco & Huld, Thomas & Vignati, Elisabetta & Monforti-Ferrario, Fabio & Dosio, Alessandro & Raes, Frank, 2014. "The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 706-716.
    8. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    9. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    10. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.
    11. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    12. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    13. Bonjean Stanton, Muriel C. & Dessai, Suraje & Paavola, Jouni, 2016. "A systematic review of the impacts of climate variability and change on electricity systems in Europe," Energy, Elsevier, vol. 109(C), pages 1148-1159.
    14. Fanny Groundstroem & Sirkku Juhola, 2019. "A framework for identifying cross-border impacts of climate change on the energy sector," Environment Systems and Decisions, Springer, vol. 39(1), pages 3-15, March.
    15. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    16. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    17. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    18. Bastien-Olvera, Bernardo A., 2019. "Business-as-usual redefined: Energy systems under climate-damaged economies warrant review of nationally determined contributions," Energy, Elsevier, vol. 170(C), pages 862-868.
    19. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    20. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:150:y:2021:i:c:s0301421520308302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.